生成式人工智能 - 文本反转(Textual Inversion):一种微调稳定扩散模型的方法

本文介绍了文本反转技术,一种用于稳定扩散模型的微调方法,允许用户通过示例图像向模型教授新概念,从而实现个性化文本到图像生成。文本反转通过寻找新嵌入向量来表示新概念,不需重新训练模型,适用于图像变化、风格迁移、概念构成等多种应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简述

        大型文本到图像稳定扩散模型已经展示了前所未有的能力,可以使用文本提示合成新场景。这些文本到图像模型提供了通过自然语言指导创作的自由。然而,它们的使用受到用户描述特定或独特场景、艺术创作或新实体产品的能力的限制。很多时候,用户被限制行使她的艺术自由来生成特定独特或新概念的图像。此外,使用新数据集为每个新概念重新训练模型非常困难且成本高昂。

        论文《一张图片胜过一个词:使用文本反转进行个性化文本到图像生成》提供了一种简单的方法来使得这种创作更自由。

Textual Inversion:使用一些反映特定概念的图像向基础模型传授有关该概念的新词汇。

        Textual Inversion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值