NLP大语言模型的缩放定律

一、简述

        ​论文《神经语言模型的缩放定律》包含对交叉熵损失的语言模型性能的经验缩放定律的研究,重点关注Transformer架构。

https://arxiv.org/pdf/2001.08361.pdficon-default.png?t=N7T8https://arxiv.org/pdf/2001.08361.pdf        实验表明,测试损失与模型大小、数据集大小和用于训练的计算量呈幂律关系,某些趋势跨越超过七个数量级。这意味着简单的方程控制着这些变量之间的关系,这些方程可用于创建最有效的训练配置,以训练非常大的语言模型。此外,网络宽度或深度等其他架构细节似乎在很大范围内影响甚微。

        从实验和推导的方程可以看出,更大的模型具有更高的样本效率,即最佳计算效率训练涉及在相对适量的数据上训练非常大的模型,并在收敛之前显著停止。 ​ 

二、实验

为了研究语言模型的扩展,人们利用不同的因素训练了各种模型,包括:

  • 模型大小(N):大小范围从 768 到 15 亿个非嵌入参数。
  • 数据集大小(D):范围从 2200 万到 230 亿个标记。
  • 模型形状:包括深度、宽度、注意头、前馈维度。
  • 上下文长度:大多数运行为 1024,但也有一些实验使用较短的上下文。
  • 批次大小:大多数运行的批次大小为 2^19,但有一些变化来衡量临界批次大小。以临界批次大小进行训练可在时间和计算效率之间实现大致最佳的折衷。

我们还定义以下训练变量:L为测试交叉熵损失。C为训练模型所使用的计算量。

三、主要发现

  • 性能在很大程度上取决于模型规模,而与模型形状的关系较弱:模型性能在很大程度上取决于规模,它由三个因素组成:模型参数数量N(不包括嵌入)、数据集大小D以及用于训练的计算量C。在合理的范围内,性能对其他架构超参数(例如深度与宽度)的依赖性非常弱。
  • 平滑幂律:当不受其他两个因子的瓶颈影响时,性能与三个比例因子NDC中的每一个都具有幂律关系,趋势跨越六个数量级以上。

        随着我们增加用于训练的计算量、数据集大小和模型大小,语言建模性能会平稳提升。为了获得最佳性能,必须同时扩大这三个因素。

        论文区分了嵌入参数和非嵌入参数,因为它们的大小与模型性能的相关性不同。当包含嵌入参数时,性能似乎除了参数数量外,还在很大程度上取决于层数。当排除嵌入参数时,不同深度的模型的性能会收敛到单一趋势。

        左图:当包含嵌入参数时,性能似乎除了参数数量外,还在很大程度上取决于层数。右图:当排除嵌入参数时,不同深度的模型的性能收敛到单一趋势。

  • 过度拟合的普遍性:只要我们同时扩大ND ,性能就会可预测地提高,但如果ND保持不变而另一个增加,就会进入收益递减的阶段。

        早期停止测试损失可预测地取决于数据集大小 D 和模型大小 N。左图:对于较大的 D,性能是 N 的直接幂律。对于较小的固定 D,随着 N 的增加,性能停止改善,模型开始过拟合。右图:过拟合的程度主要取决于 N 和 D 之间的关系。

  • 训练的普遍性:训练曲线遵循可预测的幂律,其参数大致与模型大小无关。通过推断训练曲线的早期部分,可以粗略地预测如果训练更长时间将产生的损失。
  • 样本效率:大型模型比小型模型具有更高的样本效率,可以用更少的优化步骤和使用更少的数据点达到相同的性能水平。

        一系列语言模型训练运行,模型大小从 10^3 到 10^9 个参数(不包括嵌入)。

左图:早期停止测试损失 L(N, D) 随数据集大小 D 和模型大小 N 可预测地变化。右图:在初始过渡期之后,当以大批量进行训练时,所有模型大小 N 的学习曲线都可以用以步数 (Smin) 为参数的方程拟合。

  • 收敛效率低下:在固定的计算预算C内工作,但没有对模型大小N或可用数据D进行任何其他限制时,我们通过训练非常大的模型并在收敛前明显停止来获得最佳性能。

        随着可用的计算能力不断增强,可以选择将多少资源分配给训练更大的模型、使用更大的批次以及训练更多步骤。此图说明了计算能力增加十亿倍的情况。为了实现计算效率最高的训练,大部分增加的资源应该用于增加模型大小。需要相对较少的数据增加以避免重复使用。在增加的数据中,大部分可用于通过更大的批次大小来增加并行性,而只需要非常小的增加串行训练时间。

        综合这些结果表明,随着我们适当扩大模型规模、数据和计算能力,语言建模性能会平稳且可预测地提高。相反,我们发现对许多架构和优化超参数的依赖性非常弱。预计更大的语言模型将比当前模型表现更好,样本效率更高。

四、结论和后续步骤

        在训练大型语言模型时,可以使用NDL之间的关系来推导计算缩放、过度拟合的程度、早期停止步骤和数据要求。

        ​导出的缩放关系可用作预测框架。人们可能将这些关系解释为理想气体定律的类似物,该定律以通用方式关联气体的宏观属性,而不受其微观成分的大多数细节影响。 ​

        研究这些缩放关系是否适用于具有最大似然损失的其他生成建模任务,以及是否也适用于其他设置和领域(例如图像、音频和视频模型)将会很有趣。

        在本文中,我们了解了语言模型性能与模型大小、模型形状和计算预算之间的关系。这些关系可用于推导出我们想要训练的固定大型语言模型的最佳效率计算预算,反之亦然,用于在给定固定计算预算的情况下推导出最佳效率模型(就模型大小和形状而言)。

<think>好的,我现在要处理用户关于自然语言模型发展到大语言模型的过程和技术细节的请求。首先,我需要回顾用户提供的引用资料,特别是引用[4],因为它详细描述了语言模型发展的四个阶段:统计语言模型(SLM)、神经语言模型(NLM)、预训练语言模型(PLM)和大语言模型(LLM)。用户需要了解这一演变过程中的技术细节和发展历程,所以我需要分阶段解释每个阶段的关键技术和突破。 首先,统计语言模型(SLM)阶段,主要使用n-gram模型,基于马尔可夫假设。这里需要提到数据稀疏性问题,比如长尾词对概率估计的影响,以及平滑技术的应用,比如拉普拉斯平滑。这部分内容在引用[4]中有提到,可以引用。 接下来是神经语言模型(NLM)阶段,这里的关键是神经网络的引入,如Bengio在2003年提出的模型,使用词嵌入和隐藏层。要提到分布式表示的优势,以及RNN、LSTM的应用,比如处理可变长度输入和捕捉长距离依赖。这部分内容在引用[4]中也有涉及,但可能需要补充具体模型例子。 然后是预训练语言模型(PLM)阶段,这里Transformer架构的出现是关键,尤其是2017年的《Attention is All You Need》论文。需要解释自注意力机制的优势,以及BERT和GPT的区别,比如双向和单向上下文处理。ELMo、BERT、GPT-1、GPT-2都属于这一阶段。引用[4]提到了PLM阶段,但用户可能需要更详细的技术细节,比如预训练任务(如MLM和NSP),以及微调的应用。 最后是大语言模型(LLM)阶段,参数规模扩大到千亿级别,涌现能力的出现。需要讨论缩放定律(Scaling Laws),比如模型性能与参数规模、数据量和计算资源的关系。同时,提示工程和指令微调的重要性,如InstructGPT和ChatGPT的技术路径。引用[1]、[2]、[3]提到LLM的能力和应用,需要结合这些内容说明技术突破带来的影响。 另外,用户的问题还涉及到技术细节,比如Transformer的具体机制,自注意力的计算方式,以及训练策略的变化。可能需要简要解释这些技术点,但不要过于深入数学公式,保持清晰易懂。同时,用户示例中使用了数学表达式的格式,需要确保所有行内公式用$...$,独立公式用$$...$$,并检查LaTeX语法正确。 在结构上,应该按照四个阶段分点展开,每个阶段包括时间范围、技术特征、关键技术、局限与突破。例如,SLM是1980s-2000s,NLM是2000s-2010s,PLM是2018-2020,LLM是2020至今。每个阶段需要明确时间段,并突出技术演进的关键点。 此外,用户可能希望了解各个阶段之间的过渡原因,比如从SLM到NLM是因为数据稀疏性问题,而NLM到PLM是因为Transformer的出现和预训练策略的革新。LLM阶段则是因为规模扩大带来的质变,涌现能力出现。这些过渡原因需要清晰说明,以展示发展的必然性。 最后,生成的相关问题需要围绕用户可能感兴趣的后续内容,比如Transformer架构的细节、缩放定律的具体研究、预训练与微调策略的比较,以及LLM的应用挑战。这些问题应该引导用户深入探索相关主题,同时基于已有的引用资料,如引用[2]和[5]提到的多模态和未来方向,可以适当扩展到这些领域的问题。 需要确保回答符合用户的要求:结构清晰,分步骤解释,使用中文,正确应用引用标注。同时,检查所有技术术语的准确性,避免错误。例如,区分BERT的双向编码器和GPT的自回归模型,以及它们在不同任务上的应用差异。 总结起来,回答的结构应该是: 1. 四个阶段的详细分述,每个阶段包括时间、技术特征、关键技术、局限/突破。 2. 每个阶段之间的演进原因和技术推动因素。 3. 关键技术的深入解释,如Transformer、自注意力、缩放定律等。 4. 结合引用资料,特别是引用[4]的内容,适当添加其他引用中的观点,如LLM的应用和多模态发展(引用[5])。 在撰写过程中,要注意语言流畅,避免过于学术化,保持口语化但专业。同时,正确使用LaTeX格式,确保数学表达式无误。最后,生成的相关问题要具有连贯性和逻辑性,覆盖用户可能感兴趣的后续话题。</think>### 自然语言模型大语言模型的技术演进 自然语言模型(NLM)向大语言模型(LLM)的演进经历了四个关键阶段,每个阶段都通过技术创新突破原有局限[^4]。以下是技术细节与发展历程的详细分析: --- #### **1. 统计语言模型(SLM, 1980s-2000s)** - **技术特征**:基于概率统计的n-gram模型,如马尔可夫假设的$P(w_n|w_{1:n-1}) \approx P(w_n|w_{n-k:n-1})$。 - **关键技术**: - **平滑技术**:解决数据稀疏问题(如拉普拉斯平滑)。 - **信息熵计算**:评估语言复杂度,例如交叉熵$H(p,q) = -\sum p(x)\log q(x)$。 - **局限**:无法建模长距离依赖,且参数空间随n增长指数级膨胀[^4]。 --- #### **2. 神经语言模型(NLM, 2000s-2010s)** - **技术特征**:引入神经网络学习词向量(Word Embedding)。 - **关键技术**: - **分布式表示**:Bengio(2003)提出通过隐藏层学习词的低维稠密向量。 - **RNN与LSTM**:处理序列数据,捕捉时序依赖,如隐状态更新$h_t = f(Wx_t + Uh_{t-1})$。 - **突破**:支持可变长度输入,但训练效率低且长程依赖仍受限[^4]。 --- #### **3. 预训练语言模型(PLM, 2018-2020)** - **技术特征**:基于Transformer架构的预训练+微调范式。 - **关键技术**: - **自注意力机制**:计算全局依赖关系,公式为$\text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$。 - **双向编码器(BERT)**:通过掩码语言建模(MLM)学习上下文表示。 - **自回归模型(GPT)**:通过单向语言模型生成文本。 - **优势**:参数共享、并行计算,且通过预训练实现任务泛化[^2][^4]。 --- #### **4. 大语言模型(LLM, 2020至今)** - **技术特征**:模型参数突破千亿级(如GPT-3的175B),涌现上下文学习等能力。 - **关键技术**: - **缩放定律(Scaling Laws)**:性能与模型规模、数据量、计算量呈幂律关系。 - **提示工程(Prompt Engineering)**:通过少量示例引导模型完成任务(如Few-shot Learning)。 - **指令微调**:对齐人类意图(如ChatGPT的RLHF技术)。 - **突破**:通用任务处理能力,支持代码生成、逻辑推理等复杂场景[^1][^3]。 --- ### 技术演进的关键驱动力 1. **架构创新**:从RNN到Transformer,解决了并行化与长程依赖问题。 2. **训练策略**:预训练+微调范式大幅降低下游任务适配成本。 3. **算力与数据**:GPU集群与互联网文本数据的规模化支持模型参数扩张。 4. **涌现能力**:模型规模跨越阈值后,出现思维链(Chain-of-Thought)等复杂推理能力[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值