Compare the Top Machine Learning Software for Linux as of June 2025 - Page 2

  • 1
    Semantria

    Semantria

    Lexalytics

    Semantria is a natural language processing (NLP) API from Lexalytics, leaders in enterprise sentiment analysis and text analytics since 2004. Semantria offers multi-layered sentiment analysis, categorization, entity recognition, theme analysis, intention detection and summarization in an easy-to-integrate RESTful API package. Semantria is totally customizable through graphical configuration tools, supports 24 languages, and can be deployed across private, public and hybrid clouds. Semantria scales effortlessly from single servers to entire data centers and back again to meet your on-demand processing needs. Integrate Semantria to add powerful, flexible text analytics and natural language processing capabilities to your cloud-based data analytics products or enterprise business intelligence infrastructure. Or add Lexalytics storage and visualization tools to create a complete business intelligence platform for storing, managing, analyzing and visualizing text documents.
  • 2
    Arria NLG Studio
    Arria NLG Studio is an Artificial Intelligence (AI) solution developed by Arria NLG for use by companies both in the enterprise market as well as small and medium size businesses. The Arria NLG Studio platform empowers companies to replicate the human process of expertly analyzing and communicating data insights in language humans can quickly understand. Arria’s software is used to generate insights in language such as financial analysists, spotting trends, identifying problems, and forecasting what's likely to happen next. Using Arria's patented NLG technology, the Company has created mulitiple SaaS-based solutions which provide industry specific reports with relevant details, in seconds. This is the next-generation of business intelligence and data reporting platforms. Arria NLG Studio offers API access and can be easily integrated with any software platform.
  • 3
    Mobius Labs

    Mobius Labs

    Mobius Labs

    We make it easy to add superhuman computer vision to your applications, devices and processes to give you unassailable competitive advantage. No code, customizable & on-premise AI solutions.
  • 4
    Datatron

    Datatron

    Datatron

    Datatron offers tools and features built from scratch, specifically to make machine learning in production work for you. Most teams discover that there’s more to just deploying models, which is already a very manual and time-consuming task. Datatron offers single model governance and management platform for all of your ML, AI, and Data Science models in production. We help you automate, optimize, and accelerate your ML models to ensure that they are running smoothly and efficiently in production. Data Scientists use a variety of frameworks to build the best models. We support anything you’d build a model with ( e.g. TensorFlow, H2O, Scikit-Learn, and SAS ). Explore models built and uploaded by your data science team, all from one centralized repository. Create a scalable model deployment in just a few clicks. Deploy models built using any language or framework. Make better decisions based on your model performance.
  • 5
    Tecton

    Tecton

    Tecton

    Deploy machine learning applications to production in minutes, rather than months. Automate the transformation of raw data, generate training data sets, and serve features for online inference at scale. Save months of work by replacing bespoke data pipelines with robust pipelines that are created, orchestrated and maintained automatically. Increase your team’s efficiency by sharing features across the organization and standardize all of your machine learning data workflows in one platform. Serve features in production at extreme scale with the confidence that systems will always be up and running. Tecton meets strict security and compliance standards. Tecton is not a database or a processing engine. It plugs into and orchestrates on top of your existing storage and processing infrastructure.
  • 6
    MLReef

    MLReef

    MLReef

    MLReef enables domain experts and data scientists to securely collaborate via a hybrid of pro-code & no-code development approaches. 75% increase in productivity due to distributed workloads. This enables teams to complete more ML projects faster. Domain experts and data scientists collaborate on the same platform reducing 100% of unnecessary communication ping-pong. MLReef works on your premises and uniquely enables 100% reproducibility and continuity. Rebuild all work at any time. You can use already well-known and established git repositories to create explorable, interoperable, and versioned AI modules. AI Modules created by your data scientists become drag-and-drop elements. These are adjustable by parameters, versioned, interoperable, and explorable within your entire organization. Data handling often requires expert knowledge that a single data scientist often lacks. MLReef enables your field experts to relieve your data processing task, reducing complexities.
  • 7
    Pathway

    Pathway

    Pathway

    Pathway is a Python ETL framework for stream processing, real-time analytics, LLM pipelines, and RAG. Pathway comes with an easy-to-use Python API, allowing you to seamlessly integrate your favorite Python ML libraries. Pathway code is versatile and robust: you can use it in both development and production environments, handling both batch and streaming data effectively. The same code can be used for local development, CI/CD tests, running batch jobs, handling stream replays, and processing data streams. Pathway is powered by a scalable Rust engine based on Differential Dataflow and performs incremental computation. Your Pathway code, despite being written in Python, is run by the Rust engine, enabling multithreading, multiprocessing, and distributed computations. All the pipeline is kept in memory and can be easily deployed with Docker and Kubernetes.
  • 8
    Amazon EC2 G5 Instances
    Amazon EC2 G5 instances are the latest generation of NVIDIA GPU-based instances that can be used for a wide range of graphics-intensive and machine-learning use cases. They deliver up to 3x better performance for graphics-intensive applications and machine learning inference and up to 3.3x higher performance for machine learning training compared to Amazon EC2 G4dn instances. Customers can use G5 instances for graphics-intensive applications such as remote workstations, video rendering, and gaming to produce high-fidelity graphics in real time. With G5 instances, machine learning customers get high-performance and cost-efficient infrastructure to train and deploy larger and more sophisticated models for natural language processing, computer vision, and recommender engine use cases. G5 instances deliver up to 3x higher graphics performance and up to 40% better price performance than G4dn instances. They have more ray tracing cores than any other GPU-based EC2 instance.
    Starting Price: $1.006 per hour
  • 9
    CCH Tagetik

    CCH Tagetik

    Wolters Kluwer

    Companies trust CCH Tagetik Corporate Performance Management software to save time, lower costs and reduce risk. Get a faster close, more forward looking-planning and in-depth analytics by connecting data, processes and people with a single trusted source. CCH Tagetik Finance Transformation Platform, powered by the Analytic Information Hub, is the unified platform that connects finance and operations and streamlines your consolidation & close, planning, reporting & analytics, disclosures and compliance.
  • 10
    Analance
    Combining Data Science, Business Intelligence, and Data Management Capabilities in One Integrated, Self-Serve Platform. Analance is a robust, salable end-to-end platform that combines Data Science, Advanced Analytics, Business Intelligence, and Data Management into one integrated self-serve platform. It is built to deliver core analytical processing power to ensure data insights are accessible to everyone, performance remains consistent as the system grows, and business objectives are continuously met within a single platform. Analance is focused on turning quality data into accurate predictions allowing both data scientists and citizen data scientists with point and click pre-built algorithms and an environment for custom coding. Company – Overview Ducen IT helps Business and IT users of Fortune 1000 companies with advanced analytics, business intelligence and data management through its unique end-to-end data science platform called Analance.
  • 11
    XpertRule

    XpertRule

    XpertRule Software

    We are a software business, founded by AI and engineering pioneers, that creates exceptional technology, to solve the most complex process challenges. We want to help create more sustainable businesses, with improved performance against all the metrics that matter - cost, quality, delivery and human experience. By deploying our advanced decision intelligence products - viabl.ai and XpertFactory - we allow organisations to harness the power of their two most valuable assets – the expertise of their people and the predictive analytics in their data. In short, we exist to help the world make better decisions.
  • 12
    Luminoso

    Luminoso

    Luminoso Technologies Inc.

    Luminoso turns unstructured text data into business-critical insights. Using common-sense artificial intelligence to understand language, we empower organizations to discover, interpret, and act on what people are telling them. Requiring little setup, maintenance, training, or data input, Luminoso combines world-leading natural language understanding technology with a vast knowledge base to learn words from context – like humans do – and accurately analyze text in minutes, not months. Our software provides native support in over a dozen languages, so leaders can explore relationships in data, make sense of feedback, and triage inquiries to drive value, fast. Luminoso is privately held and headquartered in Boston, MA.
    Starting Price: $1250/month
  • 13
    Sixgill Sense
    Every step of the machine learning and computer vision workflow is made simple and fast within one no-code platform. Sense allows anyone to build and deploy AI IoT solutions to any cloud, the edge or on-premise. Learn how Sense provides simplicity, consistency and transparency to AI/ML teams with enough power and depth for ML engineers yet easy enough to use for subject matter experts. Sense Data Annotation optimizes the success of your machine learning models with the fastest, easiest way to label video and image data for high-quality training dataset creation. The Sense platform offers one-touch labeling integration for continuous machine learning at the edge for simplified management of all your AI solutions.
  • 14
    Intellimize

    Intellimize

    Intellimize

    With your marketing ideas and our machine learning, you can optimize your web site for every single visitor. Simultaneously test all of your most creative marketing ideas to constantly showcase the messaging, content, and experiences that performs best. This is way beyond A/B testing and old-school, rules-based personalization. This is the new standard for high-converting landing pages across your website. This is Continuous Conversion™—and it changes… everything.
  • 15
    TiMi

    TiMi

    TIMi

    With TIMi, companies can capitalize on their corporate data to develop new ideas and make critical business decisions faster and easier than ever before. The heart of TIMi’s Integrated Platform. TIMi’s ultimate real-time AUTO-ML engine. 3D VR segmentation and visualization. Unlimited self service business Intelligence. TIMi is several orders of magnitude faster than any other solution to do the 2 most important analytical tasks: the handling of datasets (data cleaning, feature engineering, creation of KPIs) and predictive modeling. TIMi is an “ethical solution”: no “lock-in” situation, just excellence. We guarantee you a work in all serenity and without unexpected extra costs. Thanks to an original & unique software infrastructure, TIMi is optimized to offer you the greatest flexibility for the exploration phase and the highest reliability during the production phase. TIMi is the ultimate “playground” that allows your analysts to test the craziest ideas!
  • 16
    SHARK

    SHARK

    SHARK

    SHARK is a fast, modular, feature-rich open-source C++ machine learning library. It provides methods for linear and nonlinear optimization, kernel-based learning algorithms, neural networks, and various other machine learning techniques. It serves as a powerful toolbox for real-world applications as well as research. Shark depends on Boost and CMake. It is compatible with Windows, Solaris, MacOS X, and Linux. Shark is licensed under the permissive GNU Lesser General Public License. Shark provides an excellent trade-off between flexibility and ease-of-use on the one hand, and computational efficiency on the other. Shark offers numerous algorithms from various machine learning and computational intelligence domains in a way that they can be easily combined and extended. Shark comes with a lot of powerful algorithms that are to our best knowledge not implemented in any other library.
  • 17
    Sama

    Sama

    Sama

    We offer the highest quality SLA (>95%), even on the most complex workflows. Our team assists with anything from implementing a robust quality rubric to raising edge cases. As an ethical AI company, we have provided economic opportunities for over 52,000 people from underserved and marginalized communities. ML Assisted annotation created up to 3-4x efficiency improvement for a single class annotation. We quickly adapt to ramp-ups, focus shifts, and edge cases. ISO certified delivery centers, biometric authentication, and user authentication with 2FA ensure a secure work environment. Seamlessly re-prioritize tasks, provide quality feedback, and monitor models in production. We support data of all types. Get more with less. We combine machine learning and humans in the loop to filter data and select images relevant to your use case. Receive sample results based on your initial guidelines. We work with you to identify edge cases and recommend annotation best practices.
  • 18
    Feast

    Feast

    Tecton

    Make your offline data available for real-time predictions without having to build custom pipelines. Ensure data consistency between offline training and online inference, eliminating train-serve skew. Standardize data engineering workflows under one consistent framework. Teams use Feast as the foundation of their internal ML platforms. Feast doesn’t require the deployment and management of dedicated infrastructure. Instead, it reuses existing infrastructure and spins up new resources when needed. You are not looking for a managed solution and are willing to manage and maintain your own implementation. You have engineers that are able to support the implementation and management of Feast. You want to run pipelines that transform raw data into features in a separate system and integrate with it. You have unique requirements and want to build on top of an open source solution.
  • 19
    Apache Mahout

    Apache Mahout

    Apache Software Foundation

    Apache Mahout is a powerful, scalable, and versatile machine learning library designed for distributed data processing. It offers a comprehensive set of algorithms for various tasks, including classification, clustering, recommendation, and pattern mining. Built on top of the Apache Hadoop ecosystem, Mahout leverages MapReduce and Spark to enable data processing on large-scale datasets. Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end or can be extended to other distributed backends. Matrix computations are a fundamental part of many scientific and engineering applications, including machine learning, computer vision, and data analysis. Apache Mahout is designed to handle large-scale data processing by leveraging the power of Hadoop and Spark.
  • 20
    Barbara

    Barbara

    Barbara

    Barbara is the Edge AI Platform for organizations looking to overcome the challenges of deploying AI, in mission-critical environments. With Barbara companies can deploy, train and maintain their models across thousands of devices in an easy fashion, with the autonomy, privacy and real- time that the cloud can´t match. Barbara technology stack is composed by: .- Industrial Connectors for legacy or next-generation equipment. .- Edge Orchestrator to deploy and control container-based and native edge apps across thousands of distributed locations .- MLOps to optimize, deploy, and monitor your trained model in minutes. .- Marketplace of certified Edge Apps, ready to be deployed. .- Remote Device Management for provisioning, configuration, and updates. More --> www. barbara.tech
  • 21
    3LC

    3LC

    3LC

    Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility.
  • 22
    MLBox

    MLBox

    Axel ARONIO DE ROMBLAY

    MLBox is a powerful Automated Machine Learning python library. It provides the following features fast reading and distributed data preprocessing/cleaning/formatting, highly robust feature selection and leak detection, accurate hyper-parameter optimization in high-dimensional space, state-of-the art predictive models for classification and regression (Deep Learning, Stacking, LightGBM), and prediction with models interpretation. MLBox main package contains 3 sub-packages: preprocessing, optimization and prediction. Each one of them are respectively aimed at reading and preprocessing data, testing or optimizing a wide range of learners and predicting the target on a test dataset.
  • 23
    Ludwig

    Ludwig

    Uber AI

    Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Build custom models with ease: a declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Optimized for scale and efficiency: automatic batch size selection, distributed training (DDP, DeepSpeed), parameter efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and larger-than-memory datasets. Expert level control: retain full control of your models down to the activation functions. Support for hyperparameter optimization, explainability, and rich metric visualizations. Modular and extensible: experiment with different model architectures, tasks, features, and modalities with just a few parameter changes in the config. Think building blocks for deep learning.
  • 24
    AutoKeras

    AutoKeras

    AutoKeras

    An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras supports several tasks with an extremely simple interface.
  • 25
    DeepNLP

    DeepNLP

    SparkCognition

    SparkCognition, a leading industrial AI company, has developed a natural language processing solution that automates workflows of unstructured data within organizations so humans can focus on high-value business decisions. The DeepNLP product uses advanced machine learning techniques to automate the retrieval of information, the classification of documents, and content analytics. The DeepNLP product integrates into existing workflows to enable organizations to better respond to changes in their business and quickly get answers to specific queries or analytics that support decision-making.
  • 26
    KitOps

    KitOps

    KitOps

    KitOps is a packaging, versioning, and sharing system for AI/ML projects that uses open standards so it works with the AI/ML, development, and DevOps tools you are already using, and can be stored in your enterprise container registry. It's AI/ML platform engineering teams' preferred solution for securely packaging and versioning assets. KitOps creates a ModelKit for your AI/ML project which includes everything you need to reproduce it locally or deploy it into production. You can even selectively unpack a ModelKit so different team members can save time and storage space by only grabbing what they need for a task. Because ModelKits are immutable, signable, and live in your existing container registry they're easy for organizations to track, control, and audit.