大型语言模型 (LLM) 彻底改变了自然语言处理领域,它展示了先进的功能和复杂的解决方案。这些模型在广泛的文本数据集上进行训练,在文本生成、翻译、摘要和问答等任务中表现出色。尽管它们很强大,但 LLM 可能并不总是与特定的任务或领域保持一致。
在本教程中,我们将探讨微调 LLM 如何显著提高模型性能、降低训练成本并实现更准确和特定于上下文的结果。
什么是LLM微调?
微调 LLM 涉及对预先存在的模型进行额外训练,该模型以前使用较小的特定领域数据集从广泛的数据集中获取模式和特征。在“LLM 微调”的上下文中,LLM 表示“大型语言模型”,例如 OpenAI 的 GPT 系列。这种方法具有重要意义,因为从头开始训练大型语言模型在计算能力和时间方面都是高度资源密集型的。利用嵌入在预训练模型中的现有知识,可以在特定任务上实现高性能,同时大大减少数据和计算要求。
以下是 LLM 微调中涉及的一些关键步骤:
选择预训练模型:对于 LLM 微调,第一步是仔细选择符合我们所需架构和功能的基本预训练模型。预训练模型是在大量未标记数据上训练的通用用途模型。
收集相关数据集:然后我们需要收集与我们的任务相关的数据集。数据集应以模型可以从中学习的方式进行标记或结构化。
预处理数据集:数据集准备就绪后,我们需要通过清理数据集、将其拆分为训练集、验证集和测试集,并确保它与我们想要微调的模型兼容,从而进行一些预处理以进行微调。
微调:选择预训练模型后,我们需要在预处理的相关数据集上对其进行微调,该数据集更具体地针对手头的任务。我们将选择的数据集可能与特定领域或应用程序相关,从而允许模型适应和专门化该上下文。
特定任务的适配:在微调过程中,模型的参数会根据新数据集