欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/118522515
免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。
Character Region Awareness for Text Detection (CRAFT),文本检测算法,通过每个字符区域,以及字符之间的亲和力,检测文本区域。CRAFT 算法的核心,在于处理任意形状的文本,包括弯曲、长形或变形的文字。基于 VGG16 的全卷积神经网络模型,计算区域分数和亲和力分数,其中区域分数用于定位单个字符,而亲和力分数则用于将单个字符组合成文本区域。提高对于复杂自然场景下,文本检测的灵活性和准确性,而且还能适应不同尺度的文本,从大型广告牌到小型标签都能有效识别。CRAFT 算法的实现简单,通过在二值化后的字符区域和亲和力分数图上,找到最小边界矩形来获得文本的边界框。
本文主要分析 CRAFT 最重要的网络结构和训练数据。