PyTorch笔记 - Word Embeddings & Word2vec 原理与源码

本文介绍了Word Embeddings和Word2vec的原理,从n-gram模型到基于神经网络的语言模型NNLM,再到Word2vec的CBOW和Skip-gram模型。重点讲解了Hierarchical Softmax和Negative Sampling优化方法,并提供了PyTorch中的应用实例和源码分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://blog.csdn.net/caroline_wendy
本文地址:https://blog.csdn.net/caroline_wendy/article/details/128227529

语言建模

  1. 基于已有的人类组织的文本语料,来去无监督学习如何组织一句话,并还能得到单词的语义表征。
  2. 统计模型:n-gram,N个单词所构成的序列,在文档中出现的次数,基于贝叶斯公式。
  3. 无监督学习:NNLM(Neural Network Language Model)《A Neural Probabilistic Language Model》,Neural Network + n-gram
  4. 大规模无监督学习:word2vec、BERT(Bidirectional Encoder Representations from Transformers)

n-gram模型

  1. 特点:统计性、简单、泛化能力差、无法得到单词的语义信息
  2. 定义:n个相邻字符构成的序列
    1. uni-gram,单一单词
    2. bi-gram,两个单词
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值