Paper - VQGAN: Taming Transformers for High-Resolution Image Synthesis 简读

本文介绍了VQGAN如何利用Transformer和卷积神经网络结合,实现高分辨率图像的合成。VQGAN通过卷积学习丰富的上下文编码本,Transformer则建模组合长距离交互。文章探讨了损失函数,包括重建、量化、对抗和Transformer损失,以及滑动注意力窗口在不同条件图像合成任务中的应用。此外,还提到了FID分数作为评估生成图像质量的指标。

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/136055085

VQGAN: Taming Transformers for High-Resolution Image Synthesis, CVPR 2021

VQGAN: 改良 Transformer 模型以实现高清图像合成

VQGAN

源码:https://github.com/CompVis/taming-transformers

为了学习顺序数据的长距离交互,Transformers在各种任务上持续展现出最先进的结果。与卷积神经网络(CNNs)相比,Transformer不包含优先考虑局部交互的归纳偏置(Inductive Bias)。这使得Transformer具有表达能力,但也使得Transformer在处理长序列,例如高分辨率图像时,计算上不可行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值