欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/136055085
VQGAN: Taming Transformers for High-Resolution Image Synthesis, CVPR 2021
VQGAN: 改良 Transformer 模型以实现高清图像合成
源码:https://github.com/CompVis/taming-transformers
为了学习顺序数据的长距离交互,Transformers在各种任务上持续展现出最先进的结果。与卷积神经网络(CNNs)相比,Transformer不包含优先考虑局部交互的归纳偏置(Inductive Bias)。这使得Transformer具有表达能力,但也使得Transformer在处理长序列,例如高分辨率图像时,计算上不可行