Vision - 开源视觉分割算法框架 Grounded SAM2 配置与推理 教程 (1)

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/143388189

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


Grounded SAM2

Grounded SAM2 集成多个先进模型的视觉 AI 框架,融合 GroundingDINO、Florence-2 和 SAM2 等模型,实现开放域目标检测、分割和跟踪等多项视觉任务的突破性进展,通过自然语言描述来定位图像中的目标,生成精细的目标分割掩码,在视频序列中持续跟踪目标,保持 ID 的一致性。

Paper: Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks,SAM 版本由 1.0 升级至 2.0

### Grounded-SAM2 使用教程介绍 #### 关于Grounded-SAM2简介 Grounded-SAM2代表了一种增强版本的零样本学习框架,专注于提升图像理解能力。此工具允许开发者利用预训练模型执行各种计算机视觉任务而无需额外标注数据集[^2]。 #### 部署准备 为了安装和配置Grounded-SAM2环境,在macOS上可以通过如下命令完成必要的依赖项更新及脚本运行: ```bash git submodule update --init --recursive cd grounded-sam-osx && bash install.sh ``` 上述指令确保获取所有子模块并将所需库正确设置到项目中[^1]。 #### 初始化预测器实例 创建`SamPredictor`对象时需指明所使用的模型权重路径(`sam_checkpoint`)以及计算设备(CPU/GPU),这一步骤对于后续处理至关重要: ```python from segment_anything import build_sam, SamPredictor predictor = SamPredictor(build_sam(checkpoint="path/to/sam_checkpoint").to(device)) ``` 这里假设已经下载好对应的checkpoint文件,并将其放置在适当位置以便加载[^3]。 #### 处理多张图片 当面对多个输入图像时,可以调整代码逻辑来支持批量化操作。通过循环读取待处理文件列表中的每一幅图象,并调用相应的API接口实现自动化分析流程。 #### 实际应用场景案例研究 具体的应用场景可能涉及但不限于目标检测、语义分割等领域内的创新解决方案开发。借助强大的zero-shot特性,能够快速适应新领域的需求变化而不必重新训练整个网络结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值