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Abstract

Trust plays a key role in social interactions. Ex-
plicitly modeling trust is therefore an important
aspect of social network analysis in settings such
as reputation management systems, recommen-
dation systems, and viral marketing. Within the
social sciences, trust is known to depend on net-
work structure, context, individual actors’ at-
tributes, and group memberships and affiliations.
Furthermore, trust is often measured quantita-
tively, according to degrees of trust, rather than
as a binary indicator. In this paper, we propose
trust modeling as a rich challenge for statistical
relational learning (SRL). Additionally, we show
that probabilistic soft logic (PSL) is particularly
well-suited for this problem. PSL, like many
SRL languages, provides an intuitive framework
for capturing the relational aspects of trust mod-
eling, while its soft truth values easily accommo-
date varying strengths of trust. We model various
sociological theories of trust in PSL and experi-
mentally compare the resulting PSL programs to
existing trust prediction methods, demonstrating
the ease of model development and showing that
these interpretable first-order logic models pro-
duce results of competitive quality.

1 Introduction

Trust is a complex social phenomenon and a critical com-
ponent of human social interaction. Modeling trust there-
fore plays an important role in social network analysis, with
applications including viral marketing, collaborative filter-
ing, and security. Computational modeling of trust pro-
vides added insight into the communication patterns, infor-
mation flow, and behavior of the social networks underly-
ing these applications. While many trust models from the

∗Also at KU Leuven, Belgium

social sciences can be expressed in terms of logical rules,
such crisp formulations are usually too strict to be of prac-
tical use. Furthermore, trust relationships are often neither
Boolean in nature nor known explicitly, thus adding an-
other layer of uncertainty.

In this paper, we therefore highlight trust modeling as
a challenging problem for statistical relational learning
(SRL) and statistical relational artificial intelligence in gen-
eral. We reinforce our point through a detailed discussion
of trust modeling in probabilistic soft logic (Broecheler
et al., 2010). We consider probabilistic soft logic (PSL)
particularly effective for this problem domain, as it com-
bines first-order rules as used in many SRL systems with
soft truth values that naturally capture degrees of trust. PSL
thus offers a natural, intuitive, and extensible framework
for effective trust analysis.

We model three aspects of social trust theories in PSL
and compare these models, as well as their combinations,
against established prediction algorithms, showing that
these interpretable first-order logic models produce results
of competitive quality. In particular, we consider the prob-
lem of predicting trust in a partially labeled social network,
in which each node represents a person and an edge rep-
resents some form of personal relationship (usually friend-
ship). Given trust values for some person-person edges, the
goal is to accurately predict the trust values for all edges
whose trust values are unobserved.

1.1 Related Work

A large community of research focuses on computational
modeling of social trust. Methods for analyzing trust in-
clude graph-based approaches (Golbeck, 2005; Kamvar
et al., 2003; Richardson et al., 2003), probabilistic models
(Kuter and Golbeck, 2007; Rettinger et al., 2011; Vydis-
waran et al., 2011), as well as other logic-based approaches
(Jøsang et al., 2006). These contributions tend to be fixed
computational models based on particular theories of trust,
whereas in this paper, we propose SRL as a general tool
that provides the flexibility to explore various models with-



out the need for adapting inference algorithms.

The foundations for many computational approaches to
trust stem from the vast sociological and psychological lit-
erature on human behavior. We review a number of these
studies in Section 3. Trust is also an important topic in busi-
ness analytics; for example, modeling of trust is a useful
component for effective viral marketing and e-commerce
(Salam et al., 2005).

Probabilistic soft logic (Broecheler et al., 2010) is one of
various modern approaches that combine probabilistic rea-
soning with logic or programming languages, including
Markov logic networks (Richardson and Domingos, 2006),
ProbLog (De Raedt et al., 2007), and FACTORIE (McCal-
lum et al., 2009). Its main characteristic difference is the
use of soft logic, which depends on continuous relaxations
of Boolean algebra known as triangular norms (t-norms)
(Klement et al., 2000).

2 Probabilistic Soft Logic

Probabilistic soft logic (PSL) (Broecheler et al., 2010) is
a system for probabilistic modeling using first-order logic
syntax. PSL uses soft truth values, relaxing truth to the in-
terval [0, 1] and adapting logical connectives accordingly.
As a consequence of the soft logic formulation, inference
in PSL is a convex optimization problem. Additionally,
the soft truth values allow the natural integration of exter-
nal functions ranging in the same interval, such as normal-
ized similarity functions.1 This section provides a short
overview of PSL, its usage, and its internal representation.

PSL uses first-order logic (FOL) as its underlying modeling
language. In a PSL program, relationships and attributes
are modeled by different predicates (of arbitrary arity), and
first order rules model dependencies or constraints on these
predicates. For instance, TRUSTS(A,B)⇒ KNOWS(A,B)
reads as “if A trusts B, then A knows B”, where A and B
are variables referring to arbitrary objects. Replacing these
variables with constants from the domain of the program
results in a ground rule. PSL extends the notion of rule to
the soft context, i.e., rules can be assigned a weight from
R+ indicating at what cost a grounding of the rule can be
violated. For instance,

TRUSTS(A,B) ∧ TRUSTS(B,C)
0.6⇒ TRUSTS(A,C)

models that the trust relation is not fully transitive and gets
weaker along chains of links. Furthermore, a PSL pro-
gram specifies known truth values for a subset of ground
atoms. For instance, KNOWS(Alice,Bob) = 1.0 and
TRUSTS(Alice,Bob) = 0.6 indicate that Alice knows Bob,
but only trusts him somewhat above average. Throughout

1For this reason, PSL was originally introduced as probabilis-
tic similarity logic, emphasizing its ability to elegantly leverage
similarity functions in its logic.

the text, we use the convention that predicates are written in
small caps (e.g., TRUSTS) and variables are italicized capi-
tal letters (e.g., A).

To relax Boolean truth values to continuous variables, PSL
uses the Lukasiewicz t-norm and its corresponding co-norm
as the relaxation of the logical AND and OR, respectively.
These relaxations are exact at the extremes, when variables
are either true (1.0) or false (0.0), but provide a consis-
tent mapping for values in-between. The formulas for the
relaxation of the logical conjunction (∧), disjunction (∨),
and negation (¬) are as follows:

a ∧̃ b = max{0, a+ b− 1},
a ∨̃ b = min{a+ b, 1},
¬̃ a = 1− a,

where we use ˜ to indicate the relaxation from the Boolean
domain. Rules are evaluated using the Lukasiewicz norms
by converting the implication operator with the identity

X ⇒̃Y ≡ ¬̃X ∨̃Y.

The probability distribution defined by a PSL program
measures the overall distance to satisfaction, that is, the
more groundings of rules have high truth values in an in-
terpretation, the more likely it is. More formally, for a PSL
program, let G be the set of all groundings for each rule.
For any grounding g ∈ G, let wg be the weight assigned
to the rule, and tg(x) ∈ [0, 1] be the grounded rule’s truth-
value under interpretation x. The probability distribution
over interpretation x defined by the program is

Pr(x;w) = exp

−∑
g∈G

wg(1− tg(x))

 .

Considering each grounded rule a factor and each truth
value a variable, this probability distribution becomes a
log-linear Markov random field over continuous variables.
Maximum likelihood inference for the unknown truth val-
ues corresponds to solving a linear program, where the
truth-value variables are constrained to be consistent with
respect to the t-norms and are weighted by rule potentials.
Additional details, including a description of a learning al-
gorithm for setting the weights, are provided by Broecheler
et al. (2010).

3 Modeling Trust

The key role of trust in social interactions is mirrored by the
vast body of work spanning many disciplines of science.
On a high level, different types of factors influencing trust
between two persons can be distinguished, relating to the
type of relationship between them, the trusting person, the
trusted person, and the context in which trust occurs (Levin,
2008). In this section, we review a narrow portion of this



literature, focusing on general principles that we model in
PSL in Section 3.1.

Social network theory studies the structural balance of re-
lationships. For example, social networks tend to exhibit
triadic closure, which is loosely the concept that strong re-
lationships are transitive (Granovetter, 1973). In the con-
text of trust, this idea translates to how people determine
whether to trust others by consulting with those they trust.
For example, if Alice strongly trusts Bob, and Bob strongly
trusts Chris, then triadic closure implies that Alice will
likely trust Chris.

Another common idea in analysis of trust is that of rep-
utation, where people who are trusted gain a reputation of
being trustworthy, thus garnering more trust (Cosmides and
Tooby, 1992). Additionally, the qualities of the trustee (i.e.,
the person who is trusted) have been identified as impor-
tant factors for determining trust. For example, whether
Alice trusts Bob depends on Bob’s beliefs and goals, as
well Alice’s notions of confidence in Bob. People also have
person-specific innate tendencies for trust, which may stem
from early-childhood experiences (Castelfranchi and Fal-
cone, 2000).

Trust is also known to be affected by the similarity in traits
of the involved people. In particular, trust exhibits the no-
tion of homophily, a concept from social network theory
which suggests that people connect to others with whom
they are similar (Bhattacharya et al., 1998).

Finally, an important aspect of trust is its context-
dependency. Trust determines how much individuals value
information communicated from each other, so it is natural
to consider the level of trust to be a function of the infor-
mation’s topic area. Similarly, trust behavior varies signif-
icantly between different relationship types, such as trust
between family members, co-workers, or religious group
members (Glanville and Paxton, 2007).

3.1 Modeling Trust in PSL

We now present three sets of first-order logic rules, each
modeling a different aspect from social theory. We view
these as building blocks that could be used individually or
in combination for trust models in many SRL formalisms.
We demonstrate this principle in the context of PSL, allow-
ing us to easily represent degrees of trust and rely on PSL’s
parameter learning technique to estimate rule weights. We
model trust relations with a binary predicate TRUSTS. A
soft truth value for TRUSTS(A,B) = 1.0 indicates that A
fully trusts B, while TRUSTS(A,B) = 0.5 indicates that
A somewhat trusts B, and TRUSTS(A,B) = 0.0 indicates
that A does not trust B. In other probabilistic logic sys-
tems, such modeling can be cumbersome and may require
discretization of the trust scale.

The first social phenomenon we model is triadic closure.

We encode the tendency for transitivity and reciprocity in
trust using the rules listed in Figure 1, enumerating various
triangle structures and their likely effect on trust. We refer
to this model as PSL-Triadic.

The second social phenomenon we model is basic person-
ality. More specifically, we consider additional predicates
TRUSTING and TRUSTWORTHY, modeling whether a per-
son is trusting or trustworthy, respectively. These predi-
cates are not part of the input data, but they correspond to
hidden variables that need to be inferred during prediction
of trust values. The intuition is that a trusting person is
likely to trust more, while a trustworthy person will earn
more trust. The rules for this model, which we refer to as
PSL-Personality, are listed in Figure 2.

The third social phenomenon we model is the effect of sim-
ilarity on trust. Homophily is the tendency of individuals
to associate with others who are similar. The trust ratings
people have assigned to one another in our experiments are
set in the context of movies (i.e., how much do users trust
others’ opinions about movies). This makes the movie rat-
ing data especially relevant to understanding trust. Previ-
ous work has shown that trust in similar social network data
is strongly correlated with similarity (Ziegler and Golbeck,
2007). In this PSL model, we consider an additional pred-
icate SAMETRAITS(A,B), which indicates the similarity
of A and B according to their personal traits. For exam-
ple, in our experiments, we measure the similarity of users’
survey responses on movie preferences. The intuition here
is that people with similar traits tend to trust each other.
We additionally consider the idea that people who trust (or
do not trust) a particular individual will likely trust (or not
trust) those similar to that individual. Conversely, simi-
lar people will trust (or not trust) similar sets of trustees.
The rules encoding these intuitions, which form the model
PSL-Similarity, are listed in Figure 3.

Finally, we also combine the models (into PSL-TriadPers,
TriadSim, PersSim, and TriadPersSim) by simply creating
PSL programs that include the rules from the component
models. The next section reports on empirical experiments
using these models.

4 Experiments

In this section, we demonstrate the flexibility of trust mod-
eling with probabilistic soft logic. For this task, we evalu-
ate on the FilmTrust data set (Golbeck and Hendler, 2006).
FilmTrust2 is a web service designed to leverage user-to-
user trust values and user-to-movie ratings for movie rec-
ommendation. The dataset consists of a set of anonymized
users, their trust values for other users, and their ratings
for a set of movies. Since the user trust values are rather
sparse, we prune the data to only include the largest con-

2
http://trust.mindswap.org/FilmTrust/



TRUSTS(A,B) ∧ TRUSTS(B,C)⇒ TRUSTS(A,C),

TRUSTS(A,B) ∧ ¬TRUSTS(B,C)⇒ ¬TRUSTS(A,C),

¬TRUSTS(A,B) ∧ ¬TRUSTS(B,C)⇒ TRUSTS(A,C),

TRUSTS(A,B) ∧ TRUSTS(A,C)⇒ TRUSTS(B,C),

TRUSTS(A,C) ∧ TRUSTS(B,C)⇒ TRUSTS(A,B),

TRUSTS(A,B)⇒ TRUSTS(B,A),

¬TRUSTS(A,B)⇒ ¬TRUSTS(B,A).

Figure 1: Rules for PSL model of triadic closure (PSL-Triadic). Triadic closure implies the transitivity of trust, such that
individuals tend to determine whom to trust based on the opinions of those they trust.

TRUSTS(A,B)⇒ TRUSTING(A),

¬TRUSTS(A,B)⇒ ¬TRUSTING(A),

TRUSTS(A,B)⇒ TRUSTWORTHY(B),

¬TRUSTS(A,B)⇒ ¬TRUSTWORTHY(B),

TRUSTING(A) ∧ TRUSTWORTHY(B)⇒ TRUSTS(A,B),

¬TRUSTING(A) ∧ ¬TRUSTWORTHY(B)⇒ ¬TRUSTS(A,B),

TRUSTING(A)⇒ TRUSTS(A,B),

¬TRUSTING(A)⇒ ¬TRUSTS(A,B),

TRUSTWORTHY(B)⇒ TRUSTS(A,B),

¬TRUSTWORTHY(B)⇒ ¬TRUSTS(A,B).

Figure 2: Rules for PSL model of basic personality (PSL-Personality). This model maintains predicates for whether users
are trusting or trustworthy, and uses these predicates to determine each pairwise trust. Trusting individuals are more prone
to offer trust, while trustworthy individuals are more prone to receive trust.

SAMETRAITS(A,B)⇒ TRUSTS(A,B),

¬SAMETRAITS(A,B)⇒ ¬TRUSTS(A,B),

TRUSTS(A,B) ∧ SAMETRAITS(B,C)⇒ TRUSTS(A,C),

¬TRUSTS(A,B) ∧ SAMETRAITS(B,C)⇒ ¬TRUSTS(A,C),

TRUSTS(A,C) ∧ SAMETRAITS(A,B)⇒ TRUSTS(B,C),

¬TRUSTS(A,C) ∧ SAMETRAITS(A,B)⇒ ¬TRUSTS(B,C).

Figure 3: Rules for trust via similarity and homophily (PSL-Similarity). These rules model the correlation between feature
similarity and trust, where the predicate SAMETRAITS indicates whether two individuals have similar traits. The two
phenomena modeled here are homophily, which implies that people tend to trust those similar to themselves, and the idea
that similar people trust and are trusted in similar ways.
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Figure 4: Histograms of predicted trust values over true trust annotations. The brightness of each grid cell indicates the
number of edges with the corresponding true trust (horizontal axis) and predicted trust (vertical axis). More mass along the
diagonal indicates predictions consistent with the ground truth.

nected component of users. Users rate each other on a dis-
crete scale of whole numbers from 1 to 10, which we nor-
malize to [0, 1], making each trust value interpretable as a
soft truth value. Similarly, users rate movies with a recom-
mendation rating between 1 and 5. There are 500 users in
the largest connected component, among which there are
1574 total user-to-user trust values. The trust values are
directed and thus not symmetric. For each pair of users
within a two-hop distance, we compute their soft similarity
SAMETRAITS via a normalized inner product of their over-
lapping rated-entry vectors. Let r(A,M) denote the rating
given by user A for movie M , scaled to the interval [0, 1]
(by dividing by 5). If a user did not rate a movie, the score
for that user-movie pair is 0. We compute SAMETRAITS
with the formula

SAMETRAITS(A,B) =∑
M∈Movies r(A,M)r(B,M)∑

M∈Movies I(r(A,M)r(B,M) > 0)
.

The task we consider is collective prediction of trust val-
ues. We generate four folds where, in each fold, 1/4 of
the trust values are hidden at random. The prediction al-
gorithm can use the remaining 3/4 of the trust values to
learn parameters for a model and perform inference of the
unknown trust values. PSL learns weights for the rules in
each given model from these observed trust values. We

consider a transductive prediction setting, in which the in-
ference algorithm is given which pairs of users rated each
other (i.e., the full network structure), but is not given the
actual trust values on the held-out 1/4.

4.1 Baselines

We now discuss a range of baselines, including two popular
approaches from the literature, to which we compare our
PSL models from Section 3.1.

As a simple baseline, we consider predicting the average
trust across all observed trust values for every prediction
(denoted in tables as Avg-Global). Clearly, the global av-
erage is not very informative, so we additionally consider a
node-centric metric where we compute average trust values
for each node (and only use the global average if no trust
values are available for a node). We use two variants of
this: the average of incoming trust values (Avg-Incoming)
and the average of outgoing trust values (Avg-Outgoing).

We include the SAMETRAITS predicate itself as a base-
line, since PSL-Similarity heavily depends on this similar-
ity function.

EigenTrust (Kamvar et al., 2003) is a global metric analo-
gous to PageRank (Page et al., 1999) that computes a trust
value for each node by finding the left principle eigenvec-



Table 1: Average scores of trust predictions using mean av-
erage error (MAE), Kendall-tau statistic τ , and Spearman’s
rank correlation ρ. Each statistic is computed separately on
each fold, and the average over all folds is listed here.

Method MAE τ ρ
PSL-Triadic 0.2985 0.0717 0.0944

PSL-Personality 0.2586 0.1681 0.2265
PSL-Similarity 0.2198 0.1089 0.1539
PSL-TriadPers 0.2509 0.1801 0.2417
PSL-TriadSim 0.2146 0.1197 0.1688
PSL-PersSim 0.2154 0.1771 0.2444

PSL-TriadPersSim 0.2246 0.1907 0.2598
SAMETRAITS 0.2461 0.0531 0.0739
Avg-Incoming 0.3751 0.0120 0.0167
Avg-Outgoing 0.3327 0.1088 0.1463

Avg-Global 0.2086 – –
EigenTrust 0.6729 -0.0229 -0.0291
TidalTrust 0.2387 0.0478 0.0649

tor of a normalized trust matrix. The trust matrix is normal-
ized such that each row sums to 1.0, making the normalized
trust matrix stochastic. EigenTrust’s prediction is then the
stationary distribution of the stochastic process described
by the normalized trust matrix, or equivalently the limit
on the probability of landing on each node as a random
walk approaches infinity, where the probability of walking
to a neighbor is proportional to how much the current node
trusts the neighbor.

TidalTrust (Golbeck, 2005) is a graph-based algorithm that
propagates trust values through neighbors by recursively
using the weighted average of neighbor trust to decide a
node’s trust for another. In contrast to EigenTrust, Tidal-
Trust predicts distinct trust values per link, rather than a
single global trust value per node. To predict an unknown
trust value from a source node to a sink node, the algorithm
uses a breadth-first search to determine the set of minimum
length paths from the source to the sink. TidalTrust then re-
cursively computes the neighbor-weighted trust for the sink
node along these paths, starting from the sink node until fi-
nally reaching the source, at which point it outputs the final
weighted trust.

4.2 Results

For each algorithm, we measure the average score over the
four folds for three metrics: mean average error (MAE),
Kendall’s τ statistic, and Spearman rank correlation ρ.
MAE measures the absolute error on the soft truth values,
while τ and ρ measure ranking performance. For true trust
values t1, . . . , tn and predicted trust values p1, . . . , pn,
where the orderings of these values from greatest to least
are t′ and p′ respectively, these metrics are defined as fol-

lows:

MAE =
1

n

n∑
i=1

|ti − pi|,

τ =

 n∑
i=1

n∑
j=i+1

sgn(t′i − t′j) sgn(p′i − p′j)

 /

(
n

2

)
,

ρ = 1− 6

n∑
i=1

(t′i − p′i)2

n(n2 − 1)
.

The average scores are listed in Table 1. Perhaps surpris-
ingly, simply predicting the global average produces the
lowest (best) MAE. However, this can be explained by the
fact that users tend to rate approximately the same value for
all their friends, which makes predicting the average a rea-
sonable guess for minimizing the error over the full range
of predictions. This indicates that the mean error is not very
informative here. Indeed, more variation is visible in the
ranking metrics, which better capture the overall range of
predictions. This is further illustrated by two-dimensional
histograms of the trust value agreements in Figure 4. These
histograms plot the distribution of predictions in a 10× 10
grid, where true and predicted values correspond to the hor-
izontal and vertical axes, respectively. Perfect predictions
would have all the mass along the diagonal.

Both EigenTrust and TidalTrust are somewhat crippled by
the problem setup, since removing many trust values cre-
ates gaps in the network, which strongly affect these meth-
ods. In particular, TidalTrust depends on the existence of
alternate paths between nodes, and, despite the initial net-
work being a connected component, the removal of a full
quarter of the trust edges significantly increases the number
of pairs for which a directed path does not exist. In these
cases, we set TidalTrust to predict the global average of all
trust values. Since EigenTrust returns a probability distri-
bution over the nodes, its predictions are not on the same
scale as the true values, thus making it difficult to directly
compare the raw error. Nevertheless, the disconnected state
of the network causes the spectral prediction to seemingly
fail at recovering any signal from the data.

In contrast, PSL takes advantage of the edges with unob-
served trust values to propagate information across the net-
work during collective inference, and is thus more robust to
the disconnections from the sampling process. Each indi-
vidual PSL model produces different predictions, as visual-
ized in Figure 4, and, while PSL-Personality produces the
best ranking among the individual models, each combina-
tion of models produces better rankings than its component
models alone. For example, PSL-TriadPers outperforms
both PSL-Triadic and PSL-Personality. The combination
of all models, PSL-TriadPersSim produces the overall best-
scoring ranking. Additionally, the benefits of collective in-
ference via the logical rules are evident from the improve-
ment of PSL-Similarity over the raw SAMETRAITS score,



since the PSL model uses the SAMETRAITS values with
added relational logic to produce a better ranking.

5 Discussion

In this paper, we highlight social trust analysis as a chal-
lenging problem for statistical relational artificial intelli-
gence. The dynamics of social trust can naturally be mod-
eled by first-order rules, while statistical techniques address
the inherent uncertainty of trust assessments. We demon-
strate the promise of statistical relational models for trust
analysis by testing various probabilistic soft logic (PSL)
models in a small, collective trust prediction problem. The
soft truth values of PSL make it particularly well suited to
model degrees of trust. A comparison of our PSL models
with existing trust prediction methods shows that these in-
terpretable first-order logic models produce results of com-
petitive quality.

As illustrated by our PSL models, the use of a generic SRL
framework allows for easy exploration of the space of pos-
sible trust models, as extensions and variations can read-
ily be incorporated. As this paper only examines a small
portion of the literature on trust, such an exploration is
a promising direction for future work. For instance, one
could model multiple relationship types and trust topics,
capturing the intuition that a person may trust a sibling
more than a co-worker about family issues, while trusting
the co-worker more about career advice. Similarly, differ-
ent people have varying degrees of expertise on particular
topics, earning them different levels of trust dependent on
the context.

Finally, the structure of social trust is similar in form to var-
ious other phenomena in social networks, such as opinion,
social influence, and complex contagion modeling. Each
of these problems offers an exciting application for statisti-
cal relational learning and the potential to transfer models
between specific domains. We are actively exploring the
application of PSL for these problems as well.
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