Jacobi迭代法

本文介绍了Jacobi迭代法用于求解线性方程组的基础思想,包括其算法步骤、收敛条件和几何解释。同时讨论了该方法的优缺点,并提到了数值稳定性和加速收敛的方法,如Gauss-Seidel和Krylov子空间方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jacobi迭代法是数值线性代数中的一种算法,用于求解形如Ax = b的线性方程组。这里,A 是一个实数或复数矩阵,x 是未知向量,b 是已知向量。
在LLM推理加速问题上的最新进展和Jacobi迭代法有关。故先复习下Jacobi迭代法。雅可比解码是Lookahead的初始版本,类似Jacobi iteration method的思想,采取一种逐步迭代的方式完成投机采样的过程,随机初始化后,每步迭代的输出作为下一步迭代的输入。在这里插入图片描述

Jacobi迭代法的基本思想

Jacobi迭代法的基本思想是将矩阵A分解成对角部分D和其余部分(L+U)的和,即A = D + (L + U),其中D是对角矩阵,L是下三角矩阵,U是上三角矩阵。然后,利用对角矩阵D来迭代求解x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值