在这篇文章中,我们将探讨一个令人兴奋的主题:持续学习中的反向传播(Backpropagation)算法如何面临挑战,以及如何通过引入“持续反向传播(Continual Backprop, CBP)”算法来解决这些问题。近年来,深度学习在多个领域取得了显著的成功,但在面对非平稳数据分布时,传统的反向传播算法似乎显得力不从心。那么,我们究竟该如何应对这种“衰退的可塑性”现象呢?
🔄 反向传播的局限性
反向传播是神经网络训练的核心算法之一,它依赖于两个机制:随机梯度下降(SGD)和小随机权重的初始化。前者如同一位勤奋的工匠,努力调整工具;而后者则是那把让工匠开始工作的钥匙。然而,随着时间的推移,反向传播的表现会逐渐下降,尤其是在面对非平稳问题时。正如一位老练的探险者,在未知的领域中迷失方向,反向传播在非平稳环境中失去了适应性。
🧠 数据的非平稳性
在实际应用中,许多问题并非静态。例如,机器人学习在不断变化的环境中执行任务,输入数据的分布可能会随着时间而变化。这种非平稳性会导致反向传播算法的表现显著下降。我们的实验表明,反向传播在最初能够很好地适应,但随着时间的推移,表现却急剧下降。