🎤在当今的数字时代,声音不仅仅是交流的工具,更是情感和信息传递的载体。随着人工智能技术的迅猛发展,语音合成(Text-to-Speech, TTS)技术也在不断进步,尤其是在多语言和高自然度的语音合成领域。本文将深入探讨 CosyVoice 2,这一基于大型语言模型的流媒体语音合成系统,揭示其背后的技术原理、创新点及其在实际应用中的潜力。
🌟 引言:语音合成的演变
近年来,神经网络文本到语音合成模型逐渐取代了传统的拼接和统计参数方法。这些模型不仅在特定说话者的合成上达到了高保真度和自然度,还展现出零样本学习(zero-shot learning)的能力,能够模仿任何说话者的音色、语调和风格。CosyVoice 2 的出现,正是这一技术进步的缩影。
🚀 技术背景:从 CosyVoice 到 CosyVoice 2
在之前的研究中,CosyVoice 引入了一种基于监督离散语音令牌的多语言语音合成模型。通过渐进语义解码,CosyVoice 展现了高自然度的韵律、一致的内容和说话者相似性。然而,随着多模态大型语言模型(LLMs)的发展,语音合成的响应延迟和实时性变得愈发重要。因此,CosyVoice 2 应运而生,结合了全面的优化和创新。
🔍 CosyVoice 2 的核心创新
1. 统一的流媒体与非流媒体合成框架
CosyVoice 2 的一大创新是将流媒体和非流媒体合成统一在一个框架内。通过引入统一的文本-语音语言模型和块感知因果流匹配模型,CosyVoice 2 实现了与离线模式相比几乎无损的流媒体合成。这种设计不仅提升了合成的灵活性,还降低了部署的复杂性。
2. 简化的语言模型架构
在