在人工智能的奇妙世界中,大语言模型(LLMs)就像一位聪明的学生,渴望破解数学、编程等复杂难题。通常,这些模型需要“老师”提供标准答案或人类反馈来指导学习,就像学生需要考试评分来进步。然而,一项突破性的研究《Learning to Reason without External Rewards》(2025年5月25日,arXiv:2505.19590)提出了一种全新的方法:让模型像自学成才的天才一样,依靠自己的“自信”来提升推理能力。这项研究引入了强化学习内部反馈(RLIF)框架,并提出了INTUITOR方法,利用模型的**自我确定性(self-certainty)**作为唯一的学习信号。结果令人振奋:INTUITOR不仅在数学推理任务上与传统方法不相上下,还在编程等其他领域表现出色,展现了强大的适应能力。本文将用通俗的语言,详细讲解这一创新的科学意义、实验成果,以及它对未来AI自主学习的启发,带你走进这场“自信驱动”的学习革命!
🌟 引言:从“老师指导”到“自学成才”
想象一个学生独自面对一道难题,没有课本答案,也没有老师批改作业,他只能靠自己的思考和直觉找到答案。传统的大语言模型训练方法,