ASI-Arch 项目通过构建一个由大型语言模型(LLM)驱动的多智能体协作系统,实现了在神经架构发现领域的自主创新。该系统成功打破了AI研究的人力瓶颈,推动了研究范式从自动化优化向自动化创新的转变,并发现了性能超越人类设计的新型线性注意力架构,同时揭示了计算能力与架构创新之间的实证扩展定律。
1. 核心目标与项目概述
ASI-Arch 项目代表了人工智能领域,特别是神经架构发现方面的一项重大突破。其核心目标在于解决当前AI研究面临的根本性瓶颈,并推动AI研究范式向更高阶的自主创新转变。该项目由上海交通大学和MiniMax AI的研究团队共同推动,旨在构建一个能够完全自主进行科学研究的AI系统,尤其是在神经网络架构设计这一关键且复杂的领域 。ASI-Arch 的出现,标志着AI从辅助研究工具向独立研究主体的转变,其目标是让AI能够像人类科学家一样,独立完成从问题识别、假设生成、实验设计到结果验证的完整科研流程 。这不仅是对现有自动化机器学习(AutoML)技术的超越,更是对AI研究本身方法论的一次深刻革新。
1.1 打破AI研究的人力瓶颈
当前人工智能系统的能力虽然呈现指数级增长,但AI研究本身的进展速度却日益受到人类研究者认知能力和工作效率的限制,形成了一个严峻的“发展瓶颈” 。传统的AI研究高度依赖研究者的经验、直觉和试错,这不仅耗时耗力,而且容易受到个体认知局限性的影响。ASI-Arch 项目正是为了打破这一瓶颈而设计的。通过构建一个能够自主进行神经架构发现的AI系统,ASI-Arch 旨在将AI研究从人力密集型的工作中解放出来,使得研究过程不再完全依赖于人类研究者的直接参