文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。
📖 数学入门全解
本系列教程为CQF(国际量化金融分析师证书)认证所需的数学预备知识,涵盖所有需要了解的数学基础知识,旨在帮助读者熟悉核心课程所需的数学水平。
教程涵盖以下四个主题:
- 微积分
- 线性代数
- 微分方程
- 概率与统计
2.3 使用矩阵记号求解线性方程组详解
一、基本概念
线性方程组的标准形式
一个包含 nnn 个未知数和 nnn 个方程的线性方程组可表示为:
{a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋮an1x1+an2x2+⋯+annxn=bn \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases} ⎩⎨⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋮an1x1+an2x2+⋯+annxn=bn
其中 xix_ixi 是未知变量,aija_{ij}aij 是系数,bib_ibi 是常数项。
矩阵表示
-
系数矩阵:包含所有系数的矩阵
A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann) A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} A=a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
-
未知数向量:未知变量组成的列向量
x=(x1x2⋮xn) \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} x=x1x2⋮xn
-
常数项向量:方程右侧常数组成的列向量
b=(b1b2⋮bn) \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} b=b1b2⋮bn
-
增广矩阵:将系数矩阵和常数项向量合并的矩阵
(a11a12⋯a1nb1a21a22⋯a2nb2⋮⋮⋱⋮⋮an1an2⋯annbn) \left(\begin{array}{cccc|c} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \end{array}\right) a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮annb1b2⋮bn
二、初等行变换
初等行变换是求解线性方程组的基本操作,包括三种类型:
-
行交换(ER1ER_1ER1):交换矩阵的第 iii 行和第 jjj 行
Ri↔Rj R_i \leftrightarrow R_j Ri↔Rj
-
行缩放(ER2ER_2ER2):将第 iii 行乘以非零常数 kkk
Ri→kRi(k≠0) R_i \rightarrow kR_i \quad (k \neq 0) Ri→kRi(k=0)
-
行替换(ER3ER_3ER3):将第 iii 行加上第 jjj 行的 kkk 倍
Ri→Ri+kRj R_i \rightarrow R_i + kR_j Ri→Ri+kRj
重要性质:初等行变换不改变线性方程组的解集。
三、行阶梯形
通过初等行变换可将增广矩阵化为行阶梯形,其定义如下:
(a11a12⋯a1nb10a22⋯a2nb200⋱⋮⋮00⋯annbn) \left(\begin{array}{cccc|c} \boxed{a_{11}} & a_{12} & \cdots & a_{1n} & b_1 \\ 0 & \boxed{a_{22}} & \cdots & a_{2n} & b_2 \\ 0 & 0 & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \boxed{a_{nn}} & b_n \end{array}\right) a11000a12a2200⋯⋯⋱⋯a1na2n⋮annb1b2⋮bn
特征:
- 每行第一个非零元素(主元)所在列的下方元素全为零
- 主元位置逐行向右下方移动
- 零行(全零行)位于矩阵底部
四、高斯消元法求解步骤
- 前向消元:使用初等行变换将增广矩阵化为行阶梯形
- 回代求解:从最后一行开始,依次求解未知量
解的情况分析
- 唯一解:当系数矩阵可逆时(行阶梯形主对角线元素均非零)
- 无穷多解:当出现自由变量时(行阶梯形中某行全零)
- 无解:当出现矛盾方程时(行阶梯形中出现 0=c0 = c0=c (c≠0)(c \neq 0)(c=0) 的形式)
五、应用示例分析
示例1:唯一解
方程组:
{2x+y−2z=103x+2y+2z=15x+4y+3z=4 \begin{cases} 2x + y - 2z = 10 \\ 3x + 2y + 2z = 1 \\ 5x + 4y + 3z = 4 \end{cases} ⎩⎨⎧2x+y−2z=103x+2y+2z=15x+4y+3z=4
增广矩阵变换过程:
(21−21032215434)∼(21−2100110−280316−42)∼(20−12380110−2800−1442) \begin{pmatrix} 2 & 1 & -2 & 10 \\ 3 & 2 & 2 & 1 \\ 5 & 4 & 3 & 4 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & -2 & 10 \\ 0 & 1 & 10 & -28 \\ 0 & 3 & 16 & -42 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & -12 & 38 \\ 0 & 1 & 10 & -28 \\ 0 & 0 & -14 & 42 \end{pmatrix} 235124−2231014∼200113−2101610−28−42∼200010−1210−1438−2842
求解:
−14z=42⇒z=−3y+10(−3)=−28⇒y=22x−12(−3)=38⇒x=1 \begin{align*} -14z &= 42 \Rightarrow z = -3 \\ y + 10(-3) &= -28 \Rightarrow y = 2 \\ 2x - 12(-3) &= 38 \Rightarrow x = 1 \end{align*} −14zy+10(−3)2x−12(−3)=42⇒z=−3=−28⇒y=2=38⇒x=1
唯一解:x=(12−3)\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}x=12−3
示例2:无穷多解
方程组:
{x+2y−3z=62x−y+4z=24x+3y−2z=14 \begin{cases} x + 2y - 3z = 6 \\ 2x - y + 4z = 2 \\ 4x + 3y - 2z = 14 \end{cases} ⎩⎨⎧x+2y−3z=62x−y+4z=24x+3y−2z=14
增广矩阵变换:
(12−362−14243−214)∼(12−360−510−100−510−10)∼(12−3601−220000) \begin{pmatrix} 1 & 2 & -3 & 6 \\ 2 & -1 & 4 & 2 \\ 4 & 3 & -2 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & 6 \\ 0 & -5 & 10 & -10 \\ 0 & -5 & 10 & -10 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & 6 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} 1242−13−34−26214∼1002−5−5−310106−10−10∼100210−3−20620
求解:
令 z=az = az=a(自由变量),则:
y−2a=2⇒y=2+2ax+2(2+2a)−3a=6⇒x=2−a \begin{align*} y - 2a &= 2 \Rightarrow y = 2 + 2a \\ x + 2(2+2a) - 3a &= 6 \Rightarrow x = 2 - a \end{align*} y−2ax+2(2+2a)−3a=2⇒y=2+2a=6⇒x=2−a
解集:x=(2−a2+2aa)\mathbf{x} = \begin{pmatrix} 2 - a \\ 2 + 2a \\ a \end{pmatrix}x=2−a2+2aa
示例3:无解
方程组:
{x+2y−3z=−13x−y+2z=75x+3y−4z=2 \begin{cases} x + 2y - 3z = -1 \\ 3x - y + 2z = 7 \\ 5x + 3y - 4z = 2 \end{cases} ⎩⎨⎧x+2y−3z=−13x−y+2z=75x+3y−4z=2
增广矩阵变换:
(12−3−13−12753−42)∼(12−3−10−711100−7117)∼(12−3−10−71110000−3) \begin{pmatrix} 1 & 2 & -3 & -1 \\ 3 & -1 & 2 & 7 \\ 5 & 3 & -4 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & -1 \\ 0 & -7 & 11 & 10 \\ 0 & -7 & 11 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & -1 \\ 0 & -7 & 11 & 10 \\ 0 & 0 & 0 & -3 \end{pmatrix} 1352−13−32−4−172∼1002−7−7−31111−1107∼1002−70−3110−110−3
末行对应方程 0=−30 = -30=−3,矛盾,故无解。
六、总结
矩阵表示和初等行变换是求解线性方程组的强大工具:
- 增广矩阵整合了方程组的全部信息
- 初等行变换保持方程组的等价性
- 行阶梯形直观展示方程组的解情况
- 高斯消元法可系统化求解各类线性方程组
风险提示与免责声明
本文内容基于公开信息研究整理,不构成任何形式的投资建议。历史表现不应作为未来收益保证,市场存在不可预见的波动风险。投资者需结合自身财务状况及风险承受能力独立决策,并自行承担交易结果。作者及发布方不对任何依据本文操作导致的损失承担法律责任。市场有风险,投资须谨慎。