文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。
分段多项式和样条函数
在上一节讨论的一维插值例程中,通过构造某些分段多项式来工作:插值范围通过所谓的断点被分割成区间,每个区间上都有一个特定的多项式。然后这些多项式片段在断点处以预定义的平滑度匹配:对于三次样条是二阶导数,对于单调插值函数是一阶导数,等等。
一个 kkk 次多项式可以被看作是 k+1k+1k+1 个单项式基元素的线性组合,即 1,x,x2,⋯ ,xk1, x, x^2, \cdots, x^k1,x,x2,⋯,xk。在某些应用中,考虑替代的(尽管形式上等价的)基是有用的。在 scipy.interpolate
中实现了两种流行的基,分别是 B 样条(BSpline
)和贝塞尔多项式(BPoly
)。B 样条通常用于例如非参数回归问题,而贝塞尔多项式用于构造贝塞尔曲线。
PPoly
对象表示在“通常的”幂基中的分段多项式。这是 CubicSpline
实例和单调插值函数的情况。一般来说,PPoly
对象可以表示任意阶的多项式,而不仅仅是三次多项式。对于数据数组 x
,断点位于数据点处,而系数数组 c
定义了 kkk 次多项式,使得 c[i, j]
是在 x[j]
和 x[j+1]
之间的线段上 (x - x[j])**(k-i)
的系数。
BSpline
对象表示 B 样条函数 —— B 样条基元素的线性组合。这些对象可以直接实例化,或者通过 make_interp_spline
工厂函数从数据中构造。
最后,贝塞尔多项式以 BPoly
类的实例形式表示。
所有这些类都实现了一个(大部分)类似的接口,PPoly
是功能最完备的。接下来我们将考虑这个接口的主要特性,并讨论分段多项式的替代基的一些细节。
操作 PPoly
对象
PPoly
对象有方便的方法用于构造导数和原函数、计算积分以及寻找根。例如,我们对正弦函数进行制表,并找到其导数的根。
>>> import numpy as np
>>> from scipy.interpolate import CubicSpline
>>> x = np.linspace(0, 10, 71)
>>> y = np.sin(x)
>>> spl = CubicSpline(x, y)
现在,对样条函数求导:
>>> dspl = spl.derivative()
这里 dspl
是一个 PPoly
实例,它表示原始对象 spl
的导数的多项式近似。在固定参数处评估 dspl
等同于使用 nu=1
参数评估原始样条函数:
>>> dspl(1.1), spl(1.1, nu=1)
(0.45361436, 0.45361436)
注意,上述第二种形式是在原地评估导数,而使用 dspl
对象,我们可以找到 spl
的导数的零点:
>>> dspl.roots() / np.pi
array([-0.45480801, 0.50000034, 1.50000099, 2.5000016 , 3.46249993])
这与 cos(x)=sin′(x)\cos(x) = \sin'(x)cos(x)=sin′(x) 的根 π/2+π n\pi/2 + \pi\,nπ/2+πn 非常吻合。注意,默认情况下它计算了在插值区间 0⩽x⩽100 \leqslant x \leqslant 100⩽x⩽10 之外外推的根,而且外推的结果(第一个和最后一个值)要不准确得多。我们可以关闭外推,并将根查找限制在插值区间内:
>>> dspl.roots(extrapolate=False) / np.pi
array([0.50000034, 1.50000099, 2.5000016])
实际上,root
方法是更一般的 solve
方法的一个特例,后者用于找到给定常数 yyy 的方程 f(x)=yf(x) = yf(x)=y 的解,其中 f(x)f(x)f(x) 是分段多项式:
>>> dspl.solve(0.5, extrapolate=False) / np.pi
array([0.33332755, 1.66667195, 2.3333271])
这与预期值 ±arccos(1/2)+2π n\pm\arccos(1/2) + 2\pi\,n±arccos(1/2)+2πn 非常吻合。
分段多项式的积分可以使用 .integrate
方法计算,该方法接受积分的上下限。例如,我们计算完全椭圆积分 K(m)=∫0π/2[1−msin2x]−1/2dxK(m) = \int_0^{\pi/2} [1 - m\sin^2 x]^{-1/2} dxK(m)=∫0π/2[1−msin2x]−1/2dx 的近似值:
>>> from scipy.special import ellipk
>>> m = 0.5
>>> ellipk(m)
1.8540746773013719
为此,我们对被积函数进行制表,并使用单调 PCHIP 插值函数(我们也可以使用 CubicSpline
)进行插值:
>>> from scipy.interpolate import PchipInterpolator
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = (1 - m*np.sin(x)**2)**(-1/2)
>>> spl = PchipInterpolator(x, y)
然后进行积分:
>>> spl.integrate(0, np.pi/2)
1.854074674965991
这确实接近由 scipy.special.ellipk
计算的值。
所有分段多项式都可以用 N 维的 y
值构造。如果 y.ndim > 1
,它被理解为沿插值轴(默认值为 0)排列的 1D y
值的堆叠。后者是通过 axis
参数指定的,不变量是 len(x) == y.shape[axis]
。例如,我们将上面的椭圆积分示例扩展到为一系列 m
值计算近似值,使用 NumPy 的广播:
>>> from scipy.interpolate import PchipInterpolator
>>> m = np.linspace(0, 0.9, 11)
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - m[:, None]*np.sin(x)**2)
现在 y
数组的形状是 (11, 70)
,因此对于固定的 m
值,y
的值沿 y
数组的第二轴排列。
>>> spl = PchipInterpolator(x, y, axis=1) # 默认值是 axis=0
>>> import matplotlib.pyplot as plt
>>> plt.plot(m, spl.integrate(0, np.pi/2), '--')
>>> from scipy.special import ellipk
>>> plt.plot(m, ellipk(m), 'o')
>>> plt.legend(['`ellipk`', 'integrated piecewise polynomial'])
>>> plt.show()
B 样条:结点和系数
例如通过 make_interp_spline
调用从数据构造的 B 样条函数,是由所谓的结点和系数定义的。
以再次构造正弦函数的插值为例。B 样条实例的结点可通过其 t
属性获得:
>>> x = np.linspace(0, 3/2, 7)
>>> y = np.sin(np.pi*x)
>>> from scipy.interpolate import make_interp_spline
>>> bspl = make_interp_spline(x, y, k=3)
>>> print(bspl.t)
[0. 0. 0. 0. 0.5 0.75 1. 1.5 1.5 1.5 1.5 ]
>>> print(x)
[ 0. 0.25 0.5 0.75 1. 1.25 1.5 ]
我们看到,默认情况下,结点向量是从输入数组 x
构造的:首先,它被构造为 (k+1)(k+1)(k+1) -正则(它在开头和结尾各附加了 kkk 个重复的结点);然后,输入数组的第二个和倒数第二个点被移除——这就是所谓的非结点边界条件。
一般来说,一个 kkk 次插值样条需要 len(t) - len(x) - k - 1
个边界条件。对于具有 (k+1)(k+1)(k+1) -正则结点数组的三次样条,这意味着两个边界条件——或者从 x
数组中移除两个值。可以使用 make_interp_spline
的可选参数 bc_type
请求各种边界条件。
B 样条的系数可以通过 BSpline
对象的 c
属性访问:
约定是对于 len(t)
个结点,有 len(t) - k - 1
个系数。某些例程(见“平滑样条”部分)会对 c
数组进行零填充,使得 len(c) == len(t)
。这些额外的系数在评估中会被忽略。
我们强调,系数是用 B 样条基给出的,而不是幂基 1,x,⋯ ,xk1, x, \cdots, x^k1,x,⋯,xk。
B 样条基元素
B 样条是分段多项式,表示为B 样条基元素的线性组合——而这些基元素本身是某些幂基元素 xmx^mxm(m=0,1,…,km=0, 1, \dots, km=0,1,…,k)的线性组合。
B 样条基通常比幂基更计算稳定,并且适用于包括插值、回归和曲线表示在内的各种应用。主要特点是这些基元素是局部化的,并且在由结点数组定义的区间之外等于零。
具体来说,一个 kkk 次的 B 样条基元素(例如三次样条的 k=3k=3k=3)由 k+2k+2k+2 个结点定义,并且在这两个结点之外为零。为了说明这一点,我们在某个区间上绘制一系列非零基元素:
>>> k = 3 # 三次样条
>>> t = [0., 1.4, 2., 3.1, 5.] # 内部结点
>>> t = np.r_[[0]*k, t, [5]*k] # 添加边界结点
>>> from scipy.interpolate import BSpline
>>> import matplotlib.pyplot as plt
>>> for j in [-2, -1, 0, 1, 2]:
... a, b = t[k+j], t[-k+j-1]
... xx = np.linspace(a, b, 101)
... bspl = BSpline.basis_element(t[k+j:-k+j])
... plt.plot(xx, bspl(xx), label=f'j = {j}')
>>> plt.legend(loc='best')
>>> plt.show()
这里 BSpline.basis_element
实际上是构造一个仅有一个非零系数的样条的简写。例如,上述示例中的 j=2
元素等同于
>>> c = np.zeros(t.size - k - 1)
>>> c[-2] = 1
>>> b = BSpline(t, c, k)
>>> np.allclose(b(xx), bspl(xx))
True
如果需要,可以使用 PPoly.from_spline
方法将 B 样条转换为 PPoly
对象,该方法接受一个 BSpline
实例并返回一个 PPoly
实例。反向转换由 BSpline.from_power_basis
方法执行。然而,最好避免在基之间进行转换,因为这会累积舍入误差。
B 样条基中的设计矩阵
B 样条的一个常见应用是非参数回归。原因是 B 样条基元素的局部化特性使得线性代数变得稀疏。这是因为在一个给定的评估点上,最多有 k+1k+1k+1 个基元素是非零的,因此基于 B 样条构建的设计矩阵最多有 k+1k+1k+1 条对角线。
为了说明这一点,我们考虑一个玩具示例。假设我们的数据是一维的,并且限制在区间 [0,6][0, 6][0,6] 内。我们构造一个 4-正则的结点向量,对应于 7 个数据点和三次样条(k=3k=3k=3):
>>> t = [0., 0., 0., 0., 2., 3., 4., 6., 6., 6., 6.]
然后,取“观测值”为
并构造以稀疏 CSR 格式的设计矩阵
>>> from scipy.interpolate import BSpline
>>> mat = BSpline.design_matrix(xnew, t, k=3)
>>> mat
<Compressed Sparse Row sparse array of dtype 'float64'
with 12 stored elements and shape (3, 7)>
这里设计矩阵的每一行对应于 xnew
数组中的一个值,每一行最多有 k+1 = 4
个非零元素;第 j
行包含在 xnew[j]
处评估的基元素:
>>> with np.printoptions(precision=3):
... print(mat.toarray())
[[0.125 0.514 0.319 0.042 0. 0. 0. ]
[0. 0.111 0.556 0.333 0. 0. 0. ]
[0. 0. 0.125 0.75 0.125 0. 0. ]]
风险提示与免责声明
本文内容基于公开信息研究整理,不构成任何形式的投资建议。历史表现不应作为未来收益保证,市场存在不可预见的波动风险。投资者需结合自身财务状况及风险承受能力独立决策,并自行承担交易结果。作者及发布方不对任何依据本文操作导致的损失承担法律责任。市场有风险,投资须谨慎。