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As AI-powered features gain traction 
in software applications, we see 
many of the same problems we’ve 
faced with traditional software—but 
at an accelerated pace. The threat 
landscape continues to expand as 
AI is further integrated into everyday 
products, so we can expect more 
attacks. Given the expense of building 
models, there is a clear need for 
supply chain solutions.

This paper explains our approach 
to securing our AI supply chain 
using provenance information 
and provides guidance for other 
organizations. Although there are 
differences between traditional and AI 
development processes and risks, we 
can build on our work over the past 
decade using Binary Authorization for 
Borg (BAB), Supply-chain Levels for 
Software Artifacts (SLSA), and next-
generation cryptographic signing 
solutions via Sigstore, and adapt 
these to the AI supply chain without 
reinventing the wheel. 

Depending on internal processes  
and platforms, each organization’s 
approach to AI supply chain security 
will look different, but the focus 
should be on areas where it can be 
improved in a relatively short time.

Readers should note that the first 
part of this paper provides a broad 
overview of “Development lifecycles 
for traditional and AI software.”  
Then we delve specifically into AI 
supply chain risks, and explain our 
approach to securing our AI supply 
chain using provenance information. 
More advanced practitioners may 
prefer to go directly to the sections  
on “AI supply chain risks,” “Controls 
for AI supply chain security,” or even 
the “Guidance for practitioners” 
section at the end of the paper,  
which can be adapted to the needs  
of any organization.
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In 2023 and early 2024, several AI 
models were found to be malicious—
dangerous code masquerading as 
safe, freely shared models. The 
unsuspecting users who downloaded 
them to build AI capabilities instead 
received programs that harbored 
harmful functions, including the ability 
to exfiltrate data or install backdoors 
that would allow attackers to execute 
code on the users’ machines. 

Hugging Face, the open-source and 
open science platform, is addressing 
these attacks by pairing with security 
researchers to identify and fix these 
issues. The platform also offers a 
solution to protect against them 
by offering developers who upload 
models to the platform the ability  
to sign their models with GPG keys,  
a form of public key cryptography 
that allows users to verify the models 
at download time to be sure they 
come unaltered from trusted creators. 
Unfortunately, this solution isn’t used 
often, likely because GPG signing 
introduces toil in the form of ongoing 
key management—which can be 
effortful and accident-prone—and 
also slows down the upload process.

This type of attack is not new to 
anyone involved in the software 
supply chain space. As AI expands  
to become a more dominant form 
of development, we’re seeing that 
many of the same problems that have 
played out in the past for traditional 
software are now happening in AI—
but at an accelerated pace. 

We can expect to see more attacks 
like this one in the future as AI makes 
its way further into everyday products. 
There’s good news, though. First, 
there are existing software security 
measures that can and should be 
applied to AI ecosystems. Second, 
we’ve learned a lot about  
the most useful ways to extend these 
solutions. As the GPG key example 
shows, security measures don’t work 
if developers won’t or can’t use them.

In the past several years, the  
software industry has come together 
with national governments to fix 
security gaps in traditional software 
supply chains.

https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://www.wiz.io/blog/wiz-and-hugging-face-address-risks-to-ai-infrastructure
https://www.wiz.io/blog/wiz-and-hugging-face-address-risks-to-ai-infrastructure
https://huggingface.co/docs/hub/en/security-gpg
https://huggingface.co/docs/hub/en/security-gpg
https://www.google.com/url?q=https://arxiv.org/pdf/2401.14635&sa=D&source=editors&ust=1714615893802923&usg=AOvVaw2ILXp-6C3vYAXzwiWn6775
https://www.google.com/url?q=https://arxiv.org/pdf/2401.14635&sa=D&source=editors&ust=1714615893802923&usg=AOvVaw2ILXp-6C3vYAXzwiWn6775
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Often, this has meant changing 
common practices used by developers 
around the world and retrofitting 
existing infrastructures to harden 
them against vulnerabilities discovered 
only after they were exploited. Some 
of these lessons were hard-won, but 
thankfully they’re also transferable.  
We have the unique opportunity now, 
as AI development becomes more 
common, to build these solutions into 
AI’s budding infrastructure from the 
start, rather than address the problems 
later when they’re harder to solve. 

This white paper is one of a series 
describing our approaches to 
implementing Google’s Secure AI 
Framework (SAIF). The paper is meant 
for a broad technical audience and is 
intended to help both AI practitioners 
who want to learn more about security, 
and security practitioners who want 
to learn more about AI-specific needs. 
We’ve included introductory material 
for both fields of practice, so experts 
may choose to skip the background 
section covering their field. 

We explain our approach to securing 
our AI supply chain and provide 
guidance for other organizations to do 
the same.1 In particular, we argue that 
AI ecosystems can take advantage of 
a traditional supply chain governance 
technique known as provenance, a 
metadata document to capture and 
secure information about what went 
into an artifact and how it was created.

Security-minded users can protect 
themselves against attacks like the one 
described at the start of this paper 
by verifying the identity of the model 
producer, to confirm that the model is 
coming unaltered from the producer 
they expect and trust. We believe that 
tamper-proof provenance is necessary 
for AI artifacts and data to secure  
AI supply chains. Provenance can also 
provide the auditability foundations 
to solve pressing concerns, such as 
allowing training pipelines to reason 
about copyright to avoid potential 
infringement issues. More broadly, 
provenance can support essential 
horizontals such as governance  
and assurance, compliance, and 
incident response.

1.	 This paper does not cover the important topics of confidentiality, privacy, or the quality of a model’s behavior, 
which will be covered in dedicated future white papers.

https://safety.google/cybersecurity-advancements/saif/
https://safety.google/cybersecurity-advancements/saif/
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Development 
lifecycles for 
traditional and  
AI software
The following sections introduce 
what we mean by the software 
supply chain in the context 
of development lifecycles for 
traditional software (referring 
to non-AI software) and for AI-
specific development lifecycles.

01
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Many aspects of our lives and work 
are powered or assisted by software 
applications. But where does that 
software come from? How do we know 
whether we can trust it to behave 
as we expect? And have all of its 
components been acquired properly? 
These are some of the questions that 
the field of software supply chain 
security aims to address.

Traditional software development lifecycle

Traditional software supply chains

When we talk about software 
supply chains, we’re referring to the 
sequence of steps resulting in the 
creation of a software artifact.  
In a traditional software development 
lifecycle, a developer contributes 
code to a repository. Then, using 
external dependencies, the developer 
builds an executable, which is then 
deployed to a package repository. 
Later, some other developer will 
download the package to deploy  
in a production service.

Figure 1: Traditional software development lifecycle: a developer contributes code to a code repository. 
Then, using external dependencies, the developer builds an executable which is then deployed to a package 
repository. Later, some other developer will download the package to deploy in a production service.
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Figure 1 shows the process that 
transforms source code contributed  
by a developer into an artifact, through 
the process of a build. When we talk 
about an artifact, we mean a serialized 
set of bits that can be used as inputs 
or outputs for software—a dataset or 
code library, a software package or 
an OCI container image, a mobile app, 
or an AI model. When we transform 
input artifacts, plus some number of 
parameters (such as command line 
arguments or configuration files) into 
some number of output artifacts, this 
constitutes a build.2

If not secured, nearly each stage in this 
process can be the source of a supply 
chain security problem. Russ Cox, a 
Google Distinguished Software Engineer 
and author of the Go programming 
language, frames software supply 
chain security as being concerned 
with hardening a supply chain against 
two classes of problems: attacks and 
vulnerabilities.

How are attacks different from 
vulnerabilities? In the context of supply 
chains, the term attack indicates 
nefarious alteration of software before 
it’s been delivered. 

For example, if an engineer at a 
software company surreptitiously 
replaces a new OS version with  
a backdoored image, and the bad 
image then gets shipped to customers, 
we would consider that an attack. 

The 2020 SolarWinds hack was  
a notable example of a software supply 
chain attack. Intruders installed a Trojan 
horse in the software update process 
for critical network software, leading  
to network backdoors across 
thousands of companies and the  
US government.

In contrast, vulnerabilities are 
often unintentional flaws in design 
or implementation of software or its 
dependencies, which may become 
visible to humans only after the 
software has been shipped.

2.	 NIST SP 800-204D, “Strategies for the Integra-
tion of Software Supply Chain Security in DevSec-
Ops CI/CD Pipelines” provides a good generalized 
schematic model of how software supply chains 
comprise individual transformation “steps.” See 
https://csrc.nist.gov/pubs/sp/800/204/d/final.

https://research.swtch.com/acmscored
https://research.swtch.com/acmscored
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://csrc.nist.gov/pubs/sp/800/204/d/final
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We think of these as exploitable 
weaknesses in software that accrue 
due to dependencies of that 
software—a problem that compounds, 
since many projects have a large 
number of dependencies, which 
themselves have other dependencies 
of their own, and so on. 

For example, Log4Shell was a supply 
chain vulnerability that affected 
millions of Java-based applications 
and devices. This vulnerability sent the 
software industry scrambling to patch 
and update affected Log4j packages 
when it was discovered that a feature 
set created for innocent reasons could 
be exploited to gain remote code 
execution on a remote host merely 
by entering some trivial inputs on a 
web form. This vulnerability was in 
part so impactful because Log4j was 
a package that often occurred deep 
in a piece of software’s dependency 
graph, as many as twelve layers of 
dependencies down.

There are two main areas of concern 
in supply chain security: dependency 
tracking to enable fast reaction in 
case of compromise, and tampering 
protection to prevent compromises 
through malicious modifications to 
software artifacts. 

Dependency tracking

Dependency tracking is useful for 
managing both vulnerabilities and 
software licenses. When a software 
project imports a pre-existing 
software library to enable parts of its 
functionality, it may inherit security 
vulnerabilities as well as licensing 
restrictions from this dependency.

If a widely-used software library or 
component contains unexpected 
behavior that can be exploited, then 
any other packages which rely on it 
might be vulnerable. However, this 
isn’t guaranteed—for example, the 
vulnerable code path might not be 
exercised in many of the packages 
which include it. 

https://security.googleblog.com/2023/04/announcing-depsdev-api-critical.html
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://blog.deps.dev/log4j/
https://blog.deps.dev/log4j/
https://blog.deps.dev/log4j/
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Figuring out if vulnerable code  
is being executed with certainty  
is hard, as it is often an undecidable 
problem. Approximations rely on good 
instrumentation and logging practices 
in order to enable post-hoc analysis. 
Additionally, even when packages 
have been determined as definitely 
vulnerable, patching is a difficult 
process: the primary bug needs to 
be fixed, and then the patch needs to 
be rolled out gradually and iteratively 
to all the downstream dependencies 
which are implicated. As the Log4Shell 
incident showed, this is a difficult 
process when there are many layers 
of dependencies between your 
software and the affected package, 
since some language ecosystems 
require multiple intermediate updates 
before a downstream package can be 
fully patched. 

The Software Bill of Materials 
framework (SBOM) helps us encode 
dependency relationships by 
providing a list of “ingredients” in  
a piece of software.

SBOM isn’t a complete solution yet, 
but it enables further progress on 
industry-wide dependency discovery 
so that we can track, measure, and 
eventually remediate the spread of 
vulnerabilities across our software 
ecosystems.

SBOMs can also be used to track 
software licenses associated with a 
software artifact. Software licenses 
are used to specify the intended 
use of open source libraries in 
applications that include them. When 
an organization tracks all of the 
software licenses used in its software 
artifacts, and takes care to use the 
software appropriately, it can ensure 
that it respects the intentions of open 
source library authors.

https://www.ntia.gov/page/software-bill-materials
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When a user downloads a software 
application, how can they ascertain that 
it behaves according to its intended 
source code specification, rather than 
including nefarious changes?

Tampering

Figure 2 demonstrates some of 
the critical points at which an 
attacker or a malicious insider might 
inject unexpected code into an 
application throughout the software 
development lifecycle.

Figure 2: Supply chain risks associated with creating a software artifact.

Supply chain risks in traditional software
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In particular, an attacker could modify 
a software artifact’s behavior by 
making unapproved changes to the 
code, the build system, any relevant 
binary dependencies, or the package 
repository in which the artifact is 
ultimately published. Solutions like 
Supply-chain Levels for Software 
Artifacts (SLSA) help software 
providers adopt best practices in 
maintaining a chain of cryptographic 
custody linking source code to the 
eventual software applications.  
This chain is represented by a signed 
provenance document: a tamper-
proof attestation of how a software 
artifact has been produced.  

Signed provenance is designed to 
supplement SBOMs by imposing 
additional tamper-resistance 
mechanisms on the chain.3  
Provenance also supplements the 
information about the source of 
the artifact and required runtime 
dependencies with further information 
about the build (the tools and 
processes used to create the artifact) 
and build dependencies. In short,  
an SBOM provides information about 
what is in an artifact, whereas signed 
provenance provides tamper-proof 
information about both the what 
and the how for details around an 
artifact’s creation. 

3.	 https://slsa.dev/blog/2022/05/slsa-sbom

https://slsa.dev/spec/v1.0/
https://slsa.dev/spec/v1.0/
https://slsa.dev/blog/2022/05/slsa-sbom
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The following section applies the 
analysis of traditional software supply 
chains to AI software supply chains, 
to illustrate the similarities and 
differences.

Dependency tracking: As with 
traditional supply chains, it’s 
important to find and fix bugs that 
get introduced into AI artifacts and 
infrastructure. With AI, though, a new 
class of dependencies emerges: the 
datasets which have been used to 
train a model. The tracking ability 
is relevant not just for security 
and privacy concerns, but also for 
governance of use restrictions based 
on copyright, similar to concerns 
related to software licensing.

Artifact integrity: The ability to sign 
and verify an AI model and know that  
it hasn’t been tampered with, similar to 
signing a traditional software artifact.

AI software supply chains

These two domains of concern 
discussed immediately prior—
dependency tracking and tampering—
also apply to AI software supply 
chains, but with slightly different 
framing for AI-specific aspects:
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To understand how these concerns 
differ when applied to AI, let’s take 
a look at how AI applications are 
usually developed, without going into 
particularities about specific models.

The central concept for AI-powered 
applications is the model4. From 
a high-level view, a model can be 
viewed as a pairing of code and 
weights, created as part of a 
training process, that is only useful 

when deployed in AI-powered 
applications. The purpose of a 
model is to extract statistical 
patterns from data and use these 
to make predictions (also known 
as inferences) on new data for 
applications that use AI. At this high 
level, the process looks like the 
following diagram:

Figure 3: The lifecycle of an AI model: an AI developer chooses a model architecture and uses external 
datasets, pre-trained models, and a model training framework to train a model. The model is deployed to a 
model hub from where it will be downloaded later to be used in production for inference.

ML model development lifecycle

4.	 It should be noted that securing the model alone is not enough to secure an AI system. You also need to protect its 
training data, the infrastructure used to train and serve the model, and the application that uses the model.
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The following brief introduction to 
training AI models focuses on aspects 
of development that are relevant to 
supply chain risks. There are multiple 
types of models, of various formats, 
sizes, and different purposes; however, 
the main supply chain concerns apply 
similarly for all cases. As the diagram 
indicates, the high-level story is quite 
similar to the development of traditional 
software.

Datasets

To begin training a model, we need 
data from which to extract patterns. 
Datasets are arguably more important 
than the model architecture source 
code: no matter how complex a model 
is, it can only perform well when trained 
on suitable data. Thus, data sourcing 
requires practitioners to ask a few 
questions early on:

•	 What is the intended use case for the 
system—what task does it help with?

•	 What questions need to be  
answered for the task the model 
needs to perform?

•	 What data could train the model to 
answer these questions?

•	 What sources of data might fit the 
needs of practitioners and end 
users?

•	 Is the data high-quality, complete, 
accurate, and relevant?

•	 Are there any ethical and legal 
issues associated with the datasets 
used in training?

Once adequate data sources are 
identified and acquired, practitioners 
ingest them into local storage to 
enable faster training. Here, we see 
the first supply chain risk: (a)5 data 
could be maliciously poisoned before 
or during its ingestion process.

Once the data is ingested, it usually 
needs cleaning and transforming, 
processes that are collectively known 
as data augmentation. The data might 
need new labels to help train the 
model; it may contain low-quality, 
duplicated, or inconsistent records; or 
it might be in a different format than 
the task requires. If a practitioner is 
using multiple datasets, they might 
also need to resolve inconsistencies in 
formatting and content.

5.	 The risks discussed in this section are labeled with the same letter in Figure 5.
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Human and algorithmic labelers can be 
used to label, filter, or transform the 
data. From a supply chain perspective, 
humans might maliciously mislabel 
the data. Alternatively, an algorithmic 
labeler might have a bug that results in 
improper data transformations. All of 
these then impact the performance of 
the trained model. This is another supply 
chain risk: (b) unexpected (malicious 
or incorrect) training data can be used 
to train a model. From the point of 
view of the training process, this risk 
encompasses data poisoning (risk (a) 
above), but this one is more general, as 
it impacts an artifact seen by end-users. 

Some examples of transformations 
include:

•	 Removing duplicate records
•	 Supplementing missing fields from 

another dataset
•	 Changing the format or scale for 

specific fields
•	 Adding new examples by  

transforming existing data points 
(e.g., rotating an image)

•	 Increasing the amount of data 
available for training by generating 
synthetic data using a different model

Since all of these transformations 
result in datasets that are different 
from the ingested versions, from a 
supply chain integrity perspective, 
we need to keep track of these 
operations. This gives rise to the 
notion of lineage: metadata to 
capture all pre-training 
transformations that have been 
performed on datasets and 
their resulting models. Lineage 
resembles provenance in the 
traditional software supply chain, but 
provenance is broader, since it also 
covers infrastructure metadata and 
cryptographic signatures for inputs 
and outputs. Since data used during 
training is critical to a model’s 
post-training performance, it 
is essential that we capture all 
the supply chain lineage and 
provenance information related to 
dataset operations. Lineage and 
provenance will form the foundation 
for governance of AI models, including 
establishing policies and controls 
for what copyrighted materials are 
acceptable for training a model.
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Models

Models are the central concept in 
developing AI-powered applications. 
At a very high level, a model is a 
collection of weights—parameters 
that determine how each feature 
(data attribute, data column, etc.) 
influences the output. To train a model 
means adjusting the weights until the 
predicted output is close to example 
target labels from the training 
dataset. The distance between the 
example labels and actual labels is 
measured by a loss value, which the 
training process aims to minimize.  
(For an introductory explanation 
of the process, see this Machine 
Learning crash course.)  

As a light-hearted example, imagine 
the task of selecting a daily lunch 
for a picky eater. You might consider 
many factors: what they ate last; 
the suggested food’s temperature; 
its color; the flavors it contains; 
nutritional value; texture; the time of 
year; whether the picky eater is dining 
alone or with friends. Some features 
will play a larger role than others, 
or sometimes their weights might 
depend on other feature values. 

By categorizing all these features and 
tracking the picky eater’s preferred 
menus, you can learn the features’ 
weights over time, allowing you to 
gradually infer a decision tree that 
helps you plan better menus in the 
future.

The same concepts of features, target 
labels, and loss are also used when 
developing more complex models, 
including large language models 
(LLMs) and multi-modal foundation 
models (models trained on large 
amounts of data to perform a large 
variety of tasks). Here, the model 
performs multiple computations, 
merging data and weights to create 
intermediate computations. The 
results of these computations are 
then mixed with other weights and 
computations in an iterative process 
until the final prediction can be 
produced.

The resulting model architecture 
is called a computation graph: it 
represents the forward flow of data 
from input through to prediction. This 
graph records all the computations 
that occur during inference.

https://developers.google.com/machine-learning/crash-course/descending-into-ml/linear-regression
https://developers.google.com/machine-learning/resources/intro-llms
https://developers.google.com/machine-learning/resources/intro-llms
https://research.ibm.com/blog/what-are-foundation-models
https://research.ibm.com/blog/what-are-foundation-models
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Training large models from scratch is 
expensive, taking massive amounts 
of time and resources. Frequently, 
developers will start with a pretrained 
model to reduce this burden and 
then construct a new model on top. 
For example, a developer could take 
a pretrained model and perform 
transfer learning on it. 

Transfer learning teaches a 
model trained for a specific task to 
perform a different task. Finetuning 
is a type of transfer learning 
that freezes most of the model 
weights and updates only the last 
few computations in the model 
architecture. 

Figure 4: An overview of the transfer learning process. A generic model is trained on a generic dataset to 
perform efficiently on a generic task. For finetuning, the first stages of the model weights are frozen and 
the model is trained again on a task-specific dataset.

Transfer learning process

https://www.tensorflow.org/tutorials/images/transfer_learning
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These techniques allow models to be 
taught new tasks with less cost than 
training from scratch. For example, a 
developer could take a model that was 
trained against a large general-purpose 
image-recognition dataset and finetune 
it against a much smaller set of medical 
diagnostic scans to yield a model that 
detects abnormalities in X-ray imaging. 
Similarly, the components used for 
language and grammar representation 
in a LLM can be reused in a new model 
that performs well on specific  
categories of text generation.

As we finetune pretrained models for 
specific applications, we need to make 
sure that the supply chain metadata is 
properly recorded. This means capturing 
provenance for every training dataset, 
metadata from any training processes, 
and (because a generic model might 
have been trained by a separate entity) 
the provenance of the pretrained 
model. A generic model that is not 
well protected or provenanced could 
represent a supply chain threat for any 
models derived from it—(c) it could have 
been maliciously trained (to include 
backdoors or perform poorly on specific 
tasks), or it could have been tampered 
with between training and finetuning.

Other model development scenarios 
involve combining the output of 
multiple models into a larger model. 
As an example, consider a technique 
called Mixture of Experts (MoE).  
With this technique, each individual 
model can solve a part of the problem 
space, but does not perform well in 
other cases (such as when specific 
types of features are present). By 
synthesizing the predictions of each 
individual model, we can achieve a 
model that has a better performance 
overall. When using MoE, we again 
need the provenance metadata for all 
involved models in order to have full 
visibility into the supply chain of the 
final model used in production.

Model serialization

Once the model is trained, we put it 
to work by adding it to a production 
pipeline. For example, we could 
create a web application to generate 
real estate listings based on some 
key inputs. In order to create such 
applications, we need to serialize 
our model and may then choose to 
store it in a hub, from which it can be 
downloaded for each new application.

https://huggingface.co/blog/moe
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Serialization allows us to transfer 
models into new environments, which 
is useful because the hardware and 
infrastructure used for training is 
generally different from production 
inference infrastructure. From the 
supply chain integrity perspective, we 
need to ensure that the model cannot 
be tampered with while in storage (risk 
(d) in Figure 5).

One approach to model storage is to 
record the weights in a file, which each 
application parses before using the 
model. This is known as checkpointing 
and is widely used during training, 
where AI practitioners periodically save 
the weights from long training loops. 
If the process aborts or misbehaves, 
training can be restarted from the last 
set of weights or checkpoints.

There are a few approaches for 
serializing models into checkpoint files:

•	 Using predefined serialization 
features provided by a language—
for example using pickle in Python. 
Depending on the implementation, 
this can be insecure so we don’t 
recommend it—the SafeTensors 
library is a good replacement.

•	 Using a library to store the weights 
in a format that is understandable 
by the library—for example, for 
a model trained using numpy, we 
could save the checkpoints in a file 
following the NPY format—which 
can be insecure in some cases 
too. However, this means that 
every inference application must 
reuse the same code used during 
training. Because this creates a hard 
dependency between the training 
code and the inference code, we 
don’t recommend this for more 
advanced models.

•	 Packaging both the weights and 
the model architecture into a single 
entity. This can be a single file 
(for example a flatbuffers file for 
.tflite models used by TFLite 
or a zipped package for .pth 
Pytorch models) or a structured 
collection of files and directories (for 
example, a TensorFlow SavedModel). 
Sometimes, large models that would 
otherwise be stored in a single file 
are also split into multiple files to 
speed up loading. Note that even 
these formats can be insecure, for 
example .pth files can use pickle 
and SavedModels can use Lambda 
layers to run arbitrary code.

https://huggingface.co/docs/hub/en/security-pickle
https://huggingface.co/docs/safetensors/en/index
https://huggingface.co/docs/safetensors/en/index
https://numpy.org/devdocs/reference/generated/numpy.lib.format.html
https://flatbuffers.dev/
https://www.tensorflow.org/lite/guide
https://pytorch.org/docs/stable/package.html
https://www.tensorflow.org/guide/saved_model
https://github.com/Azure/counterfit/wiki/Abusing-ML-model-file-formats-to-create-malware-on-AI-systems:-A-proof-of-concept
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Bundling weights and architecture 
into a single package format allows 
developers to transfer models between 
applications more easily, as long as they 
integrate an interpreter for the model 
format in their AI-powered application. 
The interpreter parses both the model 
structure and the weights to construct 
the appropriate memory layout to 
perform the inference.

A single package also allows the 
interpreter and the framework used to 
train the model to evolve separately. 
As long as compatibility is maintained, 
models trained with one version of 
the framework can be used with an 
interpreter matching another version. 
For some of the existing serialization 
formats, it’s possible to achieve both 
forward and backward compatibility, 
achieving a full decoupling between the 
training process and the applications 
that use the models in production.

Since model serialization represents 
creating a new artifact in our supply 
chain—namely a checkpoint—this 
is another place where we should 
record provenance memorializing the 
operations performed (risk (c) in  
Figure 5). 

Recording complete provenance for 
each new artifact or checkpoint helps 
developers track risks introduced 
during storage or model serialization.

After a model has been recorded, 
it might also undergo model 
quantization. This process takes 
a fully trained model and shrinks it 
by converting its weights into low 
precision integers, and, in some 
cases, also replaces operations in the 
model’s computational graph with 
operations that can operate on the 
quantized weight. This increases the 
efficiency of the model, especially 
when it gets deployed to embedded/
mobile applications, by allowing 
integer operations to consume fewer 
computational resources and less 
time. The loss of precision from this 
conversion is not significant enough 
to cause the model to mispredict 
during inference. 

The process of quantizing a model 
is also building a new artifact, so we 
need to record the associated supply 
chain metadata to maintain the 
provenance of the updated model 
(this is also represented in Figure 5 
by risk (c)).
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Overall, we need to remember that 
models are not easily inspectable: 
the behavior of a model is heavily 
influenced by its weights, yet given the 
large number of weights and binary 
format, it is not humanly possible to 
analyze the weights to predict what 
a model may do. In some storage 
formats, it is also difficult to analyze 
the computational graph. Instead, we 
adopt the point of view that models are 
programs; they are similar to bytecode 
that is interpreted at runtime to 
produce some valuable set of behavior. 
However, unlike traditional software 
where it is feasible to understand a 
binary via reverse engineering, models 
are opaque, meaning their behavior 
can be only partially understood 
by observing a small fraction of all 
possible inputs. Given the expense of 
building models, there is a clear need 
for complete supply chain provenance 
information. In case of an attack on the 
training platform, for example, we can 
use this information to quickly identify 
which models need to be analyzed and 
retrained to remove potential tampering 
(risk (e) in Figure 5).

Training framework

AI practitioners generally don’t 
write code from scratch to train 
models. Instead they use libraries 
optimized for operations that can take 
advantage of the available hardware. 
Powerful libraries—such as JAX, 
TensorFlow, and PyTorch—are able to 
use hardware accelerators—GPUs and 
TPUs—on the training host machine to 
significantly improve training speed. 
For large models, the framework can 
distribute computation across multiple 
hosts, managing scheduling and 
network communication optimally. 

These features make training 
frameworks complicated, allowing 
opportunities for vulnerabilities to 
be introduced (risk (f) in Figure 5). 
The training libraries are therefore a 
critical part of the supply chain, since 
they can produce models that have 
been affected by a vulnerability. 
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Recording provenance about training 
frameworks allows us to identify 
models trained with frameworks 
later found to have a bug in the 
implementation of some math 
operation, or in the way they compile 
model-specific code to run on 
hardware accelerators.

Evaluation

When training models, we want to 
make sure they perform effectively 
on examples of their task, without 
overfitting6 to the specific examples 
they were trained against. There are 
multiple junctures during the process 
where we evaluate performance:

•	 Automated testing during 
training: This uses a dedicated 
portion of the training data. Instead 
of giving that data to the model 
during the training loops, it is used 
to evaluate the model at every 
checkpoint, as a proxy for the 
model’s performance on data not 
seen during training. 

•	 Human evaluation during 
training: LLMs and foundation 
models are also evaluated by 
humans during training using 
reinforcement learning with human 
feedback (RLHF). Periodically, a 
checkpoint is used to answer a 
variety of prompts, and humans rate 
the answers. This provides a signal 
to the model on what answers are 
suitable for the prompt, and the 
training process will update model 
weights accordingly.

Since RLHF and similar techniques 
influence the resulting model, we 
should capture provenance to 
incorporate information about these 
processes in the AI supply chain. 
If test data were manipulated, or a 
human rater maliciously encouraged 
incorrect answers, this could influence 
the behavior of the model (risks 
(a), (b), (c) in figure 5); recording 
provenance lets us detect the impact 
of such manipulations when they are 
discovered.

6.	 Overfitting is when a model performs exceptionally well on the training data but fails on new data.
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Larger models, such as LLMs and 
foundational models, are also 
evaluated after release, often by third 
parties. These evaluations are similar 
to integration tests or acceptance 
testing in traditional software: they 
don’t change the software, but they 
allow an organization to decide 
whether it performs as expected 
before admitting or deploying it. 
Organizations with an emphasis on 
production hygiene and observability 
may choose to perform such tests 
in a trusted execution environment 
and record the results in a signed 
attestation, so that they can ensure 
models have been adequately 
evaluated before use (risks (g) and 
(h) in Figure 5, where (h) occurs 
once the model has been used 
inadequately in production).

https://github.com/openai/evals


AI supply  
chain risks
This section discusses in more 
detail how the AI development 
lifecycle described previously 
can lead to AI-specific supply 
chain risks. 
In many ways, the process by which one trains, 
publishes, and serves a model strongly resembles 
the traditional software development lifecycle 
(SDLC). We can consider that the training process 
(or data transformation when doing dataset 
enrichment) represents a “build.” The “sources” 
and “dependencies” of the build are represented 
by the training framework, the code used to define 
the model architecture, and the datasets. Finally, 
the resulting “package” is the model (or training 
data in the case of dataset augmentation).7

02

7.	 Again, the “SSC Model” in §2.4 of NIST SP 800-204D, “Strategies 
for the Integration of Software Supply Chain Security in DevSecOps 
CI/CD Pipelines” is a useful abstraction of these concepts — with 
equal applicability to AI as to traditional software.
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In the previous section, we have 
shown that training a foundation 
model involves multiple components 
and processes:

1.	 Starting with datasets, we perform 
multiple data cleaning and data 
augmentation steps.

2.	 We choose a framework with which 
to train a new model, combining 
the cleaned and augmented data 
with previously trained models.

3.	 The model is recorded as a 
checkpoint, and possibly quantized 
into a smaller footprint.

4.	 The checkpoint is stored in a  
model hub.

5.	 The checkpoint then serves future 
training steps or gets deployed in 
AI powered applications.

Every step can be affected by 
unintentional flaws or design choices 
that can result in supply chain 
compromises. To summarize the risks 
we identified as we walked through 
the model’s lifecycle previously:

Similarities to traditional supply chain risks

•	 Data could be maliciously or 
inadvertently poisoned, either at 
ingestion or during curation and 
cleaning.

•	 The training platform might be 
vulnerable to attacks.

•	 Training frameworks and libraries 
may contain vulnerabilities or 
backdoors which affect their 
computations. For example, model 
checkpointing or quantization code 
could introduce changes to the 
model architecture or weights in 
possibly security-sensitive ways.

•	 Human raters, or automated 
testing steps during training, could 
introduce buggy or malicious 
inferences.

•	 Model hubs could be compromised, 
allowing a malicious developer to 
poison model weights or datasets, 
thus affecting both production uses 
as well as future training steps using 
pretrained models.

•	 When deploying the model to create 
AI powered applications, developers 
might inadvertently use inadequately 
trained or evaluated models if they 
receive a different model than 
expected.
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Any of these risks could make a model 
in production vulnerable to exploits.

Figure 5: The overall training of a foundational model and the associated supply chain risks

Supply chain risks in foundation model training
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In order to secure this complex 
system and ensure security for model 
supply chains, we should analyze how 
every step of this process works as a 
whole (Figure 5) and individually. Since 
training is the common factor in any AI 
supply chain, let’s look at the training 

When we compare the AI supply chain in Figure 6 with the risks from the 
traditional software supply chain from Figure 2, we notice clear parallels: namely, 
they both incorporate notions of code, version control, deployment to a repository 
or hub, and eventual download by a package consumer. These similarities inform 
the risks and controls discussed later in this paper.

supply chain diagram and the associated 
risks as representative of the risks across 
the entire model development process. 
This diagram of risks expands on the AI 
model development lifecycle shown in 
Figure 3:

Figure 6: Supply chain risks associated with training a model

Supply chain risks in ML
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As we just explained, AI development 
shares a common shape with 
traditional software development. 
However, there are also some 
practices in the software development 
life cycle which diverge from the 
current state of AI development.

Let’s take a look at some 
characteristics of traditional software 
development that may not directly 
transfer to AI:

•	 Source control: Code is usually 
stored in a version control system. 
This lets developers collaborate on 
a shared codebase, track the state 
of the codebase over time, and 
roll changes back or forward as 
needed.

•	 Code review: Many organizations 
use code review as a tool to ensure 
that new code changes match 
their standards for readability or 
correctness.

Differences specific to AI development

•	 Hosted, scripted builds: To 
transform the code into a package, 
many organizations use a hosted 
build system that follows a set of 
predefined configuration steps. 
This automation allows for higher 
consistency across developers and 
release cycles, and it also reduces 
the burden of maintenance on each 
individual developer.

•	 Short, cheap build cycles: If 
a developer discovers that a 
recently-built package contains 
bugs, or decides that they’d like 
to change some functionality, 
they can start a new build without 
incurring much additional overhead 
(perennial complaints about build 
latency notwithstanding).

https://xkcd.com/303/
https://xkcd.com/303/
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When we look at AI development, these 
attributes may differ in significant ways:

•	 Immature version control for 
datasets: The ecosystem for storing, 
changing, and retrieving datasets is 
generally less opinionated and robust 
than the corresponding ecosystem 
for code management. The huge size 
of most datasets also adds additional 
constraints to the robustness of 
version control solutions. This means 
that the contents of a given dataset 
may change through cleaning, 
copying, and extension, often 
without incurring an explicit semantic 
versioning bump.

•	 Human review for data is 
challenging: Training datasets are 
large and may be updated frequently. 
It could be expensive or infeasible 
to perform human review with 
high confidence after every data 
transformation.

•	 ML training is not usually 
fully scripted: ML training 
often comprises a series of ad-
hoc incremental steps that are 
not recorded in any central 
configuration. It may also span a 
series of systems and frameworks, 

rather than running entirely within 
the confines of a single hosted build 
system. Training can also rely on 
specialized hardware, which makes 
it more difficult to apply sandboxing 
techniques commonly used in 
hosted build systems. The gold 
standard of hermetic, reproducible, 
and deterministic builds is much 
more difficult to achieve when 
training ML models.

•	 Long, expensive training cycles: 
Because training is expensive, many 
training libraries support additional 
ways to “sideload” new data or code 
into already-running processes. 
This means the control plane for 
injecting inputs into ML training is 
more diverse and complicated than 
a traditional build system. 

Since data version control is less 
mature than code source control, it’s 
harder to track the provenance of 
datasets as they are prepared and 
made available for training. Likewise, 
since training processes can be more 
complicated than build processes, 
it becomes correspondingly more 
difficult to track the provenance of 
model inputs and outputs as they flow 
through training.



Securing the AI Software Supply Chain

Controls for 
AI supply  
chain security

The following section discusses 
the available controls that can 
protect against key AI supply 
chain risks. 

03
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Though there are differences between 
traditional and AI development 
processes and risks, we can adapt 
traditional approaches, such as 
applying protections designed 
for code to also cover data. For 
example, we can extend the concept 
of provenance to cover data 
transformations, extending on what 
ML practitioners call lineage. There’s 
no need to reinvent the wheel. 

An end-to-end approach to AI supply 
chain security should address the 
two needs discussed previously in 
this paper: tracking all dependencies 
of the AI-powered applications, 
starting from data and ending with the 
production model, and ensuring the 
integrity of all artifacts.

In order to meet these needs, an 
organization should work toward 
being able to confidently answer a 
series of questions about AI models 
used in production:

We believe that traditional supply chain solutions can 
and should be extended to apply to AI development. 

•	 Who created the model?
•	 What was the system used to 

train the model? What systems 
processed the dataset?

•	 Has the model been changed in 
any way since it was published?

•	 Which version of the model is this? 
Which versions are in production? 

•	 What data sources were used for 
training, testing, and evaluating the 
model?

•	 How were the data sources 
processed or cleaned before 
training?

•	 Which code frameworks were used 
to train, test, and evaluate the 
model?

•	 Which evaluations have been run 
on the model?

•	 Are the datasets appropriate for 
use in the given training context?

•	 Do the datasets have any specific 
attributes (copyrighted data, 
licensing restrictions, location data, 
etc.) which require specific care 
and approvals before training?
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To answer crucial questions about 
supply chain security, an organization 
can focus on areas where they can 
move the needle of AI supply chain 
security in a relatively short time. 

This includes:

Protecting integrity for the 
production systems8 which 
process, train, or serve AI models. 
Organizations need to ensure that 
all the infrastructure used in pre-
processing, training, fine-tuning, 
or serving is secure and resilient 
against software supply chain threats. 
Because this is a fast-moving space, 
it can be challenging to ensure that 
systems remain compliant as they 
evolve or add new features.

Cataloging provenance for all 
datasets and AI models. In addition 
to securing the infrastructure used 
by AI training and serving workflows, 
we also need to understand the 
provenance of the datasets (used 
either for training or benchmarks) and 
models themselves. What are all the 
inputs used to produce a model? 

Guiding principles

Which datasets does the organization 
store and use, and what are their 
relevant properties?

Tracking the provenance of AI 
artifacts means comprehensively 
recording usage relationships 
between them. Besides enabling 
supply chain integrity, provenance 
also helps speed up launch approvals 
(determining if an AI-powered 
application can be released as a user 
facing product) and debug behavior 
that is observed in production (e.g., 
determining if a bug in a compiler 
used during training or serving 
a model affects the results of an 
inference of a model).

Protecting models against 
tampering and datasets against 
poisoning. Even if a model is trained 
on secure infrastructure, it can still be 
vulnerable to further tampering.

8.	 Chapter 14: Deploying Code of Building Secure 
and Reliable Systems is a good reference for how 
to protect the integrity of production systems for 
traditional software. Many of the items presented 
there apply to the AI world, too.

https://google.github.io/building-secure-and-reliable-systems/raw/ch14.html
https://sre.google/books/
https://sre.google/books/
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For example, an attacker could copy 
the model and fine-tune a new version 
against a carefully curated set of data 
that causes it to issue objectionable 
inferences, or an insider could 
surgically overwrite some of the model 
weights to cause unexpected behavior. 
Targeted supply chain attacks have 
already been demonstrated against 
models in the wild, with one proof-
of-concept attack that surgically 
modified a popular model to spread 
misinformation and uploaded it at a 
legitimate-looking repo path to deceive 
users into downloading it.

For models as well as some datasets,9 

it’s possible to mitigate against 
poisoning by annotating artifacts with 
signatures and provenance. This also 
speaks to the importance of robust 
data cleaning processes: if the data 
cleaning processes are properly 
tracked in provenance documents, 
an organization can detect poisoning 
by insiders. An organization can also 
mitigate against poisoned data that is 
imported from external sources at the 

start of the supply chain via early data 
cleaning practices.

Discovering and patching or replacing 
buggy or vulnerable artifacts. Because 
training undergoes many iterations, 
adding more data and code throughout 
the process, vulnerabilities could creep 
into a model in many ways. To prevent 
exploitation and enable remediation, 
we must track all the inputs—both code 
and data—that were used to produce 
models. Likewise, we must maintain an 
accurate inventory of all the models that 
an organization uses or produces, so 
that we can respond to vulnerabilities as 
they arise.

In addition, because AI development 
relies on large-scale data processing, it 
also inherits classes of problems related 
to data curation and sharing. 

Preventing accidental or malicious 
data rights infringement. This concern 
has become increasingly important in the 
AI context. In particular, we highlight the 
need to ensure that training processes 
can consume only approved datasets.

9.	 Datasets can be gathered in two different ways. The first type of dataset can be imported as relatively stable, 
versioned artifacts: e.g. a public domain dataset that is imported, cleaned, and stored at discrete intervals. This 
kind of dataset can be treated similarly to other kinds of software artifacts, and lends itself to signatures and 
provenance tooling quite nicely. However, not all data fits this shape: for example, if you consider dynamically-
generated database records, such as anonymized search logs that are continuously written based on real-world 
interactions, this might demand a more specialized approach.

https://www.wiz.io/blog/38-terabytes-of-private-data-accidentally-exposed-by-microsoft-ai-researchers
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
https://www.ft.com/content/61008a05-1752-48bc-bf7a-6a4643c0cf27
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The following section discusses  
Google’s internal approach to supply 
chain security for AI models.

This paper focuses primarily on the 
integrity and data provenance aspects  
of the AI supply chain concerns 
discussed earlier. Vulnerability 
management is an expansive topic 
that will be covered in more depth in a 
separate white paper, but the solutions 
discussed here support and enable 
a robust vulnerability management 
program. 

Our approach to AI integrity is to 
extend the existing supply chain 
security work we’ve done over the past 
decade using Binary Authorization for 
Borg (BAB), Supply-chain Levels for 
Software Artifacts (SLSA), and next-
generation cryptographic signing 
solutions such as Sigstore. We also 
use specific tooling to catalog data 
and capture the information about 
AI artifacts that could be used for 
security controls, governance, and 
other AI-specific concerns such as 
copyright infringement. 

Google’s approach: BAB, SLSA, and artifact integrity

BAB and SLSA address nearly every 
risk discussed in this paper; the 
remaining risks are addressed by data 
cataloging for AI artifacts.

Binary Authorization for Borg

BAB, or Binary Authorization for Borg, 
refers to the controls that ensure that 
only authorized binaries can run on our 
production cluster management system 
(“Borg”).10

BAB was first conceived to protect 
against insider threats. Within 
development teams, everyone knows 
and trusts one another; yet, statistically 
as an organization grows, the risk also 
grows that a bad actor might try to 
tamper with code or data. In addition, 
there is the risk that a development 
team member’s workstation might be 
compromised by an external attacker 
who then uses the team member’s 
privileges to tamper with code or data.

10.	 BAB is also known as BCID, which stands for 
Binary and Configuration ID.

https://cloud.google.com/docs/security/binary-authorization-for-borg
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To counter this, BAB was introduced 
to prevent unilateral access: no single 
person could make an unapproved 
change to code in production. Over 
time, BAB’s guarantee has expanded. 
It now ensures that all released 
software is free from tampering and 
its contents are well understood.

BAB policies ensure that:

•	 Code changes have been reviewed 
and approved by multiple people.

•	 The artifact was built on an 
approved build system hardened 
against tampering.

•	 The build was verifiable, meaning 
that the binary or package 
produced by the build can be 
verifiably audited by examining 
metadata which identify all source 
code used for  
the build.

•	 Metadata (provenance) was itself 
captured in a tamper evident way.11

•	 The configurations for jobs that 
host software services are also 
protected against unilateral 
modification.

Similar to a very detailed SBOM, 
this provides deep visibility into the 
source dependencies used to create 
an artifact in production. Additionally, 
the isolation and cryptographic 
signing requirements imposed by 
BAB upon Google’s build systems 
enable us to trust that the artifact 
was not tampered with either during 
or after creation.

BAB is now used across Google 
to enforce technical policies 
around production integrity. By 
using technical means to enforce 
supply chain integrity policies at 
scale, Google reduces insider risk, 
promotes reliability and uniformity, 
and enables thousands of teams to 
comply with SDLC-related standards 
with minimal overhead.

11.	 There’s a difference between simply capturing 
provenance and capturing secure, tamper-
evident provenance. We consider only the 
latter to be useful for supply chain protections. 
Secure provenance is generated at the time of 
an artifact’s build, in an isolated environment 
on a trusted builder that is protected from 
interference. Cryptographic signatures ensure 
that the provenance is not tampered with after 
generation.
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To enact technical change at large 
scale, we leaned on two key principles: 

•	 We defined supply chain integrity 
as a ladder to climb, rather than an 
all-or-nothing “moonshot” effort. 
We gradually defined, implemented, 
and rolled out a series of smaller 
improvements that built on one 
another to create large reductions 
in attack surface over time.

•	 We worked with infrastructure 
owners across Google to implement 
“secure by default” systems. For 
example, Google’s hosted build 
service now signs its builds with 
extensive provenance metadata 
by default, requiring no behavior 
change from users. We’ve also 
automated the policies which 
govern provenance verification and 
admission control on Borg, reducing 
the security burden for teams that 
deploy services at Google.

Supply-chain Levels for 
Software Artifacts

In 2021, we externalized BAB as SLSA, 
or Supply-chain Levels for Software 
Artifacts, so that other organizations 
could benefit from our decade of 
progress. Soon after, we donated 
SLSA to the Open Source Security 
Foundation (OpenSSF) for cross-
industry collaboration. SLSA has been 
expanded from its Google-specific 
roots to now be useful to organizations 
and software producers of all sizes, 
including open source software 
producers and project maintainers.

Like BAB, SLSA is organized into 
well-defined levels, each laying 
out increasingly rigorous security 
expectations. This is intentional to 
enable systematic organizational 
change: a given team, department, or 
operational domain can begin scaling 
the ladder at any point, with each rung 
reachable from the previous. 

When using BAB to secure Google’s 
production systems, this progression 
of levels provided an essential 
structure for transforming the maturity 
of security controls.

https://slsa.dev/
https://openssf.org/
https://openssf.org/
https://slsa.dev/spec/v1.0/levels
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Similarly, SLSA provides a clear road-
map with benchmarks, assessments, 
and goals. The leveled structure makes 
complex changes more manageable by 
defining clear standards and achievable 
steps to reach them. The framework 
also creates a common vocabulary and 
context for change initiatives. This fos-
ters clear communication and alignment 
across teams and departments about 
expectations and progress.

This latter point—shared language—
speaks in turn to a major benefit 
brought by the SLSA framework in the 
industry at large. As well as outlining 
supply chain best practices, and 
enabling automated policy to manage 
and mitigate risk, SLSA has provided 
a shared vocabulary and conceptual 
model for the problem space as a 
whole, which is applicable in turn to  
the AI supply chain space. 

Model provenance

Across Google’s first-party and open 
source AI development ecosystems, 
we’re in the process of adopting the 
SLSA framework and format to sign 
model provenance. 

This metadata document cryp-
tographically binds a model to the 
service account—an identifying 
account that represents an applica-
tion rather than a human user—that 
was used to train it. It will also en-
able Google to verify all of its models 
against the expected signing keys, 
such that an insider cannot overwrite 
or change the model (including the 
weights that determine its behavior) 
without detection. 

Achieving higher SLSA build levels is 
particularly challenging for models 
compared to other software types, 
because training is long, resource-
intensive, and difficult to sandbox. 
We’re currently exploring approaches 
to harvest provenance from Google’s 
existing comprehensive data-access 
logging infrastructure, instead of 
relying solely on AI platforms to 
provide the entire bill of materials.

This will enable us to extend the 
signed SLSA provenance certificate 
to include additional metadata about 
the data used to train the model: 
data provenance.
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Data provenance

For complete understanding of what  
is in a model, we must also understand 
the data that was used to train it. 
Data provenance entails recording 
the source of all data examples used 
during training and evaluation of 
models. If data is transformed prior 
to training (e.g., for data cleaning 
purposes), we recommend building 
a separate dataset with its own 
associated provenance document, 
linking to the original data. 

Currently, data provenance does not 
convey the supply chain integrity 
of data. As mentioned earlier, we 
are investigating ways to annotate 
datasets with their own signatures, 
which would provide the integrity 
to know whether they had been 
tampered with after signing. We 
currently have open questions about 
the granularity of record keeping: we 
could just record the datasets by a 
URI, or we could cryptographically 
encode every record in the dataset 
into a structure that would allow 
detecting if a specific example has 
been used during training or not. 

There are also possibilities between 
the two extremes, and we are analyzing 
trade-offs along the spectrum.

Within Google, we provide tooling for 
data and model cataloging to improve 
both the distribution and discovery 
of assets developed and used by 
teams for AI model development and 
deployment. The data and model 
catalog is focused on the snapshot 
and version of metadata, and the data 
or model’s properties and attributes. 
Entries in the catalog are closely 
associated with the underlying asset 
that is stored in one or many locations, 
which in turn helps users short-list 
the available assets that meet their 
criteria for the AI project being worked 
on, request access and compliance 
approvals, and start using the asset 
immediately thereafter. 

Every dataset version and model 
version is also issued a globally unique 
entry ID that can be used as part of the 
many data and model loading libraries 
we support within Google. Using the 
IDs, we are able to associate the 
lineage of downstream jobs and tasks 
back to the exact version or snapshot 
of a dataset or model ingested.



03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 41

Within Google, we record the following 
asset metadata for models and datasets:

Model Attributes

Name

Unique Global Version Identifier

Date Created

Date Updated

Format

Location

Size

 
Owner

Schema

Documentation

SHA-256 Hash

Data Attributes

Name

Unique Global Version Identifier

Date Created

Date Updated

Format

Location

Classification results  
(what the data is comprised of)

Owner

Schema

Documentation

SHA-256 Hash
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Provenance collection is often an 
afterthought for an organization but we 
have learned that it is difficult to retrofit 
this into model training workflows. 
As a first step, it is important to have 
rigorous bookkeeping for the artifacts 
themselves. Every model and dataset 
needs to have globally unique identifiers 
and need to be immutably versioned as 
a foundation for provenance collection. 
Approaches that can reliably record 
provenance include:

•	 Explicit Provenance Logging: 
Recording lineage relationships 
in I/O libraries such as data 
ingestion or model checkpointing 
libraries. The challenge is achieving 
comprehensive coverage over all the 
ways in which datasets and models 
can be read or written.

•	 Infrastructure Log Harvesting: 
Low-level infrastructure logs that 
universally record all file accesses 
can be mined for AI artifact 
provenance, but it is often hard to 
accurately relate low-level logs back 
to models and datasets.

•	 Execution Sandbox: Ideally, AI 
workflows like training or data 
enrichment jobs provide a manifest 
of inputs and outputs and a 
sandbox restricts any access 
outside of the manifest while 
recording every input and output. 
This requires organizational 
mandates for all workflows to 
be run within such an execution 
sandbox.

Once an organization has provenance 
for all steps in the AI supply chain, 
they can construct policies that can 
be evaluated automatically to detect 
if a model is acceptable to be used 
in production or for training a new 
model. This results in a shift-left 
approach to model development, 
as usage of bad models or datasets 
can be detected earlier in the 
development lifecycle instead of at 
launch approval stage, after costly 
training and testing.
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Google invests significantly in 
securing the open source software 
world, including support for SLSA and 
the Sigstore project. In 2023, we open 
sourced our work to apply existing 
solutions such as SLSA and Sigstore 
to AI.

In this section we are focusing on 
open source solutions such as SLSA 
and Sigstore for models that are 
developed by authors that are in 
a different organization than the 
developers of the software system 
that uses the models. These can 
be open models (models whose 
weights are available to end users), 
or fully open source models (both the 
weights and the training source code 
are available). In either case, when 
working with these models, we should 
adopt a more stringent security 
posture in which we consider the 
model publisher as untrusted. We are 
exploring the different types of claims 
that can be made about the models, 
and how these types of claims can be 
publicly verified.

Solutions for third-party AI model development

Signing outside Google

For signing open models, we 
recommend Sigstore, a free, public-
good service that simplifies code 
signing and verification by abstracting 
away most key-management 
complexity. Sigstore’s public signing 
ledgers form the foundation of trust for 
SLSA provenance (introduced earlier 
in this paper). Sigstore can be used 
to sign artifacts after building them. 
Users can then verify the signature, 
proving that the artifact has not been 
tampered with since it was built. Since 
Sigstore’s signing process supports 
using temporary or “ephemeral” keys 
that expire shortly after the signing 
event, there is no ongoing burden 
for developers to maintain or rotate 
keys long term. This addresses the 
risk of a later key compromise that 
would negate the signature. Like 
SLSA, Sigstore’s benefits will also 
be applicable to the AI supply chain 
space.

https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://www.sigstore.dev/
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Most immediately, we are considering 
how models can be signed. This can 
be seen as a claim made by the model 
publisher that the user is seeing the 
authoritative version of that model—
the one intended to be released by 
the publisher. Note that we can make 
a distinction between the publisher 
of a model (the identity uploading 
the model to the external model hub) 
and the trainer of the model (the 
identity that triggers the training 
job that produces the model). The 
threat model we are adopting here 
may assume that the trainer might 
not trust the publisher or the internal 
storage system and might want to 
protect the integrity of the model 
during these steps.

For these purposes, we have a library 
for signing models with Sigstore. 
Depending on the threat model, the 
library supports signing just the final 
model or checkpoints during training. 
For long training jobs running on 
shared environments, it is preferable 
to sign all checkpoints so that 
attackers cannot force loading from a 
corrupted checkpoint after a training 
job is interrupted. 

However, we are aware that 
checkpoints can be huge and the 
signing process can add delays, 
so checkpoint signing is not active 
by default. We are exploring 
parallelization approaches for the 
signing process, so that integrity 
protections can be deployed without 
large latency/efficiency costs.

We are planning to integrate the 
signing library with model training 
frameworks to enable transparent 
signing of models without asking 
model trainers to update their code. 
We are also integrating the library with 
model hubs to allow signing the model 
when it is uploaded. The difference 
between these two modes is that, 
while signing as early as possible 
ensures integrity for a larger part 
of the supply chain, not all model 
training frameworks might support 
signing. Thus, rather than refusing to 
upload unsigned models, model hubs 
have the opportunity to offer signing 
just before upload.

https://github.com/sigstore/model-transparency
https://github.com/sigstore/model-transparency
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Once a model is uploaded, the model 
hub can verify its signature and display 
a specific label on a model card—a 
public source of information for 
models that’s similar to a README.md 

file in code repositories. These short 
documents are attached to models 
and used to describe what the model 
is, how it was trained, its use cases, 
and other useful information. A label 
indicating a verified signature in a 
model card signals to users that the 
model has integrity protections, and 
security conscious users can also 
validate the signature themselves 
before loading the model in production. 
We recommend that model verification 
is performed, to cover the risk of the 
model hub itself being compromised.

Furthermore, we are planning to also 
offer signing for datasets to reduce the 
opportunity window for data poisoning. 
This would strengthen other mitigations 
already implemented by data storage 
systems.

Integrity outside Google

While artifact integrity helps in 
detecting artifact tampering after 
the artifact been built, in the longer 

term, we are also considering 
verifiable claims that can be made 
about the model’s training pipeline. 
We are exploring building control 
features into existing training 
environments that would allow the 
model publisher to output verifiable 
provenance about the model (e.g., 
its code dependencies, the training 
environment, and even the training 
data or pre-trained models that were 
used). This is where SLSA for models 
comes into play.

However, in order to achieve a 
high level of SLSA assurance, the 
provenance generator must run in an 
environment that is not controlled by 
the person triggering the build. This 
means that we need custom reusable 
trainers for AI models. These must 
support hardware accelerators, a 
requirement that is usually not present 
in the traditional software world.

We are currently working on extending 
the SLSA standards to include a 
separate dependency track (to 
enable reduction of risk arising from 
using external dependencies) and 
a separate source track (to provide 
protection against tampering prior to 
the build).

https://github.com/slsa-framework/slsa/issues/961
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With the provenance in place, we 
are also exploring more advanced 
functionalities, such as verifiable 
claims around the inclusion or non-
inclusion of a specific artifact in the 
training data. 

To begin with, we are considering 
the use of the Croissant format for 
describing the datasets. While this 
was developed to streamline the 
discovery and understanding of 
external datasets, we can use it as 
the canonicalization layer needed to 
ensure that computing the digest of a 
dataset can be done in a deterministic 
manner.

As we mentioned earlier, a significant 
component of the lifecycle of LLMs 
is represented by post-training 
evaluations. Currently, these 
are performed without security 
guarantees, relying on implicit trust 
on the evaluator. We are thinking 
of performing these evaluations 
on trusted enclaves, reporting the 
benchmark scores in a tamper-proof 
way, using the in-toto attestation 
framework.

Finally, we need to consider the 
usage reviews when open models are 
involved. The most common scenario 
is when a new AI-powered application 
is awaiting launch approvals, but we 
are also thinking about how libraries 
that use AI models can be safely 
imported into a company’s internal 
source control. In either of these 
cases, we need a way to look at all 
the associated supply chain metadata 
(generated based on solutions 
presented before in this section), 
and combine them into information 
that can be both human and machine 
readable. This would enable faster 
reviews, as well as automating and 
shifting left of approvals for using 
open models.

For this part of the problem space, 
we recommend using Graph for 
Understanding Artifact Composition 
(GUAC), as it is the system of choice 
to understand large supply chains 
both in open source and at the 
boundary between a company’s 
internal systems and open source 
software. With minimal changes, 
GUAC can be used as a window into 
the AI model development lifecycle, 
as a tool for aggregating and querying 
metadata across the AI supply chain.

https://github.com/mlcommons/croissant
https://in-toto.io/
https://docs.guac.sh/
https://docs.guac.sh/
https://docs.guac.sh/


03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 47

Even given all the solutions already 
at hand for AI supply chain security, 
open questions remain and problems 
still need to be solved. While we’ve 
presented some of our opinions above, 
we believe it would be fruitful to come 
together as an industry to find common 
consensus on the following open 
questions in particular: 
•	 What information should model and 

data provenance contain?
•	 What format should be standardized 

for model and data provenance for 
interoperability?

•	 How and where should model and 
data provenance be stored, shared, 
and verified?

•	 What level of detail should model 
and data provenance capture? For 
example, when recording dataset 
information in the provenance, do 
we commit only to the name of 
the dataset or to each individual 
example in the data? The latter 
would allow answering questions 
regarding whether a specific piece 
of information was used during the 
training process, but it would be 
larger and require more effort to 
generate.

Open questions for industry consensus
•	 Should datasets be signed for 

integrity? If so, are there additional 
data-specific fields to add to the 
SLSA standard?

•	 How can we protect model 
training against consuming 
untrusted sources or tampering 
with provenance before it’s been 
signed?12 Full sandboxing or 
resource isolation seems difficult 
and costly, so are there alternative 
mechanisms to explore?

•	 Should model hubs support 
provenance verification as a built-in 
feature?

•	 Should the industry embrace ML-
BOM13 or provenance?

12.	 Full sandboxing or resource isolation is important 
at higher SLSA levels to ensure that provenance 
is protected from tampering during generation. To 
apply the same sandboxing to the training process 
seems difficult and costly. We are considering 
whether there are alternative methods to explore, 
such as reducing the burden of sandboxing during 
the training process by leveraging observability into 
dataset storage system logs as a supplementary 
mechanism for fleshing out a provenance 
document (“log harvesting”).

13.	 There is an industry discussion about extending 
the SBOM concept to a new ML-BOM. However, 
we feel that the SLSA provenance can capture the 
same information about the supply chain, while the 
remaining information in an ML-BOM is typically 
present in a model card. This view might change in 
the future, however, and we are looking at relevant 
industry developments and will adapt as needed.

https://cyclonedx.org/capabilities/mlbom/
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Guidance for 
practitioners
Each organization’s approach 
to supply chain security will 
look different, based on internal 
processes and platforms. 

But even if the approach to capturing and 
handling the metadata needed for supply chain 
insights will vary, the ultimate goal will likely look 
similar: to build your supply chain with insight and 
transparency. We suggest reviewing the Guiding 
Principles section earlier in this paper about the 
technical considerations to achieve this goal.

04
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Capture metadata

Capture enough metadata to 
understand the lineage of each 
artifact (models or otherwise!). You 
want to be able to answer basic 
questions: where an artifact came 
from; who authored it, changed, or 
trained it; what datasets were used in 
training it; and what source code was 
used to generate the artifact. 

Increase integrity

With time, work toward increasing 
integrity of both artifacts and 
associated metadata. Ultimately, 
the metadata should be captured 
during the artifact’s creation in a 
non-modifiable, tamper-evident 
way. The artifact itself should be 
cryptographically signed using 
next-generation signing techniques 
that reduce the burden of key 
management, to show whether an 
artifact has been tampered with after 
the fact. 

Organize metadata

Organize the information to support 
queries and controls. In the event of 
an incident, you’ll be able to know the 
blast radius of affected components. 
At launch, you can enact appropriate 
governance. During development, 
controls will determine whether 
artifacts meet guidelines for use. 

Share with others

Finally, as a best practice, share the 
metadata you capture in an SBOM, 
provenance document, model card, 
or some other vehicle that will 
assist other developers. This type of 
transparency into a model’s creation 
increases trust and assists in tracing 
unexpected behavior from a model 
back through a complex supply chain 
to discover the source of the problem.

An organization will be in a good position if it’s able to 
do the following for all software and AI artifacts:
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Our approaches outlined in this white paper are 
intended to guide industries and organizations 
seeking to secure their AI software supply chains. We 
believe that extending existing software supply chain 
solutions is an effective way to counter many of the 
risks associated with AI software supply chains. Rather 
than creating new solutions, we can approach AI 
models like traditional software. By diligently applying 
established software supply chain security practices 
and carefully tracking datasets, organizations can 
bolster their defenses against malicious attacks and 
recover more quickly from unintended vulnerabilities. 

The stakes are high. AI systems are increasingly 
involved in sectors ranging from healthcare to finance 
and infrastructure. Over the last decade we’ve seen 
in traditional software domains that you are only as 
secure as your weakest link, and the weakest link 
is often an overlooked piece of a supply chain. By 
applying the solutions laid out in this paper, we believe 
that we can collectively strengthen the links that tie 
the AI software supply chain together. 

Collective action is key. As with traditional software, 
no AI model is an island. No matter how self-reliant 
an organization is, there will always be dependencies, 
datasets, and other shared components involved. By 
increasing the information we capture and share about 
these components, we can secure the fundamental 
building blocks of the shared AI ecosystems and help 
secure the AI software supply chains for everyone.

Conclusions


