
Secure AI Framework

April 2024

Authors: Shamik Chaudhuri, Kingshuk Dasgupta,
Isaac Hepworth, Michael Le, Mark Lodato, Mihai Maruseac,
Sarah Meiklejohn, Tehila Minkus, Kara Olive

Securing the
AI Software
Supply Chain

Abstract

Securing the AI Software Supply Chain 2

As AI-powered features gain traction
in software applications, we see
many of the same problems we’ve
faced with traditional software—but
at an accelerated pace. The threat
landscape continues to expand as
AI is further integrated into everyday
products, so we can expect more
attacks. Given the expense of building
models, there is a clear need for
supply chain solutions.

This paper explains our approach
to securing our AI supply chain
using provenance information
and provides guidance for other
organizations. Although there are
differences between traditional and AI
development processes and risks, we
can build on our work over the past
decade using Binary Authorization for
Borg (BAB), Supply-chain Levels for
Software Artifacts (SLSA), and next-
generation cryptographic signing
solutions via Sigstore, and adapt
these to the AI supply chain without
reinventing the wheel.

Depending on internal processes
and platforms, each organization’s
approach to AI supply chain security
will look different, but the focus
should be on areas where it can be
improved in a relatively short time.

Readers should note that the first
part of this paper provides a broad
overview of “Development lifecycles
for traditional and AI software.”
Then we delve specifically into AI
supply chain risks, and explain our
approach to securing our AI supply
chain using provenance information.
More advanced practitioners may
prefer to go directly to the sections
on “AI supply chain risks,” “Controls
for AI supply chain security,” or even
the “Guidance for practitioners”
section at the end of the paper,
which can be adapted to the needs
of any organization.

Securing the AI Software Supply Chain

Contents

Introduction

Development lifecycles for
traditional and AI software

01

02

Traditional software supply chains 08

07

05

AI software supply chains 14

Similarities to traditional supply chain risks

Differences specific to AI development

Dependency tracking 10

Datasets 16

Tampering 12

Models 18

Model serialization 20

26

Training framework 23

27

Evaluation 24

30

AI supply chain risks

Securing the AI Software Supply Chain

Contents

Controls for AI supply chain security03

04

Guiding principles

36

34

32

Google’s approach: BAB, SLSA, and artifact integrity

Solutions for third-party AI model development

Open questions for industry consensus

39

Capture metadata

Increase integrity

Organize metadata

Share with others

Binary Authorization for Borg

Signing outside Google

36

Model provenance

40

Supply-chain Levels for Software Artifacts

Integrity outside Google

38

Data provenance

43

43

49

45

47

49

48

49

49

50

Guidance for practitioners

Conclusions

Introduction

Securing the AI Software Supply Chain 5

In 2023 and early 2024, several AI
models were found to be malicious—
dangerous code masquerading as
safe, freely shared models. The
unsuspecting users who downloaded
them to build AI capabilities instead
received programs that harbored
harmful functions, including the ability
to exfiltrate data or install backdoors
that would allow attackers to execute
code on the users’ machines.

Hugging Face, the open-source and
open science platform, is addressing
these attacks by pairing with security
researchers to identify and fix these
issues. The platform also offers a
solution to protect against them
by offering developers who upload
models to the platform the ability
to sign their models with GPG keys,
a form of public key cryptography
that allows users to verify the models
at download time to be sure they
come unaltered from trusted creators.
Unfortunately, this solution isn’t used
often, likely because GPG signing
introduces toil in the form of ongoing
key management—which can be
effortful and accident-prone—and
also slows down the upload process.

This type of attack is not new to
anyone involved in the software
supply chain space. As AI expands
to become a more dominant form
of development, we’re seeing that
many of the same problems that have
played out in the past for traditional
software are now happening in AI—
but at an accelerated pace.

We can expect to see more attacks
like this one in the future as AI makes
its way further into everyday products.
There’s good news, though. First,
there are existing software security
measures that can and should be
applied to AI ecosystems. Second,
we’ve learned a lot about
the most useful ways to extend these
solutions. As the GPG key example
shows, security measures don’t work
if developers won’t or can’t use them.

In the past several years, the
software industry has come together
with national governments to fix
security gaps in traditional software
supply chains.

https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://www.wiz.io/blog/wiz-and-hugging-face-address-risks-to-ai-infrastructure
https://www.wiz.io/blog/wiz-and-hugging-face-address-risks-to-ai-infrastructure
https://huggingface.co/docs/hub/en/security-gpg
https://huggingface.co/docs/hub/en/security-gpg
https://www.google.com/url?q=https://arxiv.org/pdf/2401.14635&sa=D&source=editors&ust=1714615893802923&usg=AOvVaw2ILXp-6C3vYAXzwiWn6775
https://www.google.com/url?q=https://arxiv.org/pdf/2401.14635&sa=D&source=editors&ust=1714615893802923&usg=AOvVaw2ILXp-6C3vYAXzwiWn6775

Introduction

Securing the AI Software Supply Chain 6

Often, this has meant changing
common practices used by developers
around the world and retrofitting
existing infrastructures to harden
them against vulnerabilities discovered
only after they were exploited. Some
of these lessons were hard-won, but
thankfully they’re also transferable.
We have the unique opportunity now,
as AI development becomes more
common, to build these solutions into
AI’s budding infrastructure from the
start, rather than address the problems
later when they’re harder to solve.

This white paper is one of a series
describing our approaches to
implementing Google’s Secure AI
Framework (SAIF). The paper is meant
for a broad technical audience and is
intended to help both AI practitioners
who want to learn more about security,
and security practitioners who want
to learn more about AI-specific needs.
We’ve included introductory material
for both fields of practice, so experts
may choose to skip the background
section covering their field.

We explain our approach to securing
our AI supply chain and provide
guidance for other organizations to do
the same.1 In particular, we argue that
AI ecosystems can take advantage of
a traditional supply chain governance
technique known as provenance, a
metadata document to capture and
secure information about what went
into an artifact and how it was created.

Security-minded users can protect
themselves against attacks like the one
described at the start of this paper
by verifying the identity of the model
producer, to confirm that the model is
coming unaltered from the producer
they expect and trust. We believe that
tamper-proof provenance is necessary
for AI artifacts and data to secure
AI supply chains. Provenance can also
provide the auditability foundations
to solve pressing concerns, such as
allowing training pipelines to reason
about copyright to avoid potential
infringement issues. More broadly,
provenance can support essential
horizontals such as governance
and assurance, compliance, and
incident response.

1.	 This paper does not cover the important topics of confidentiality, privacy, or the quality of a model’s behavior,
which will be covered in dedicated future white papers.

https://safety.google/cybersecurity-advancements/saif/
https://safety.google/cybersecurity-advancements/saif/

Securing the AI Software Supply Chain

Development
lifecycles for
traditional and
AI software
The following sections introduce
what we mean by the software
supply chain in the context
of development lifecycles for
traditional software (referring
to non-AI software) and for AI-
specific development lifecycles.

01

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 8

Many aspects of our lives and work
are powered or assisted by software
applications. But where does that
software come from? How do we know
whether we can trust it to behave
as we expect? And have all of its
components been acquired properly?
These are some of the questions that
the field of software supply chain
security aims to address.

Traditional software development lifecycle

Traditional software supply chains

When we talk about software
supply chains, we’re referring to the
sequence of steps resulting in the
creation of a software artifact.
In a traditional software development
lifecycle, a developer contributes
code to a repository. Then, using
external dependencies, the developer
builds an executable, which is then
deployed to a package repository.
Later, some other developer will
download the package to deploy
in a production service.

Figure 1: Traditional software development lifecycle: a developer contributes code to a code repository.
Then, using external dependencies, the developer builds an executable which is then deployed to a package
repository. Later, some other developer will download the package to deploy in a production service.

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 9

Figure 1 shows the process that
transforms source code contributed
by a developer into an artifact, through
the process of a build. When we talk
about an artifact, we mean a serialized
set of bits that can be used as inputs
or outputs for software—a dataset or
code library, a software package or
an OCI container image, a mobile app,
or an AI model. When we transform
input artifacts, plus some number of
parameters (such as command line
arguments or configuration files) into
some number of output artifacts, this
constitutes a build.2

If not secured, nearly each stage in this
process can be the source of a supply
chain security problem. Russ Cox, a
Google Distinguished Software Engineer
and author of the Go programming
language, frames software supply
chain security as being concerned
with hardening a supply chain against
two classes of problems: attacks and
vulnerabilities.

How are attacks different from
vulnerabilities? In the context of supply
chains, the term attack indicates
nefarious alteration of software before
it’s been delivered.

For example, if an engineer at a
software company surreptitiously
replaces a new OS version with
a backdoored image, and the bad
image then gets shipped to customers,
we would consider that an attack.

The 2020 SolarWinds hack was
a notable example of a software supply
chain attack. Intruders installed a Trojan
horse in the software update process
for critical network software, leading
to network backdoors across
thousands of companies and the
US government.

In contrast, vulnerabilities are
often unintentional flaws in design
or implementation of software or its
dependencies, which may become
visible to humans only after the
software has been shipped.

2.	 NIST SP 800-204D, “Strategies for the Integra-
tion of Software Supply Chain Security in DevSec-
Ops CI/CD Pipelines” provides a good generalized
schematic model of how software supply chains
comprise individual transformation “steps.” See
https://csrc.nist.gov/pubs/sp/800/204/d/final.

https://research.swtch.com/acmscored
https://research.swtch.com/acmscored
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://csrc.nist.gov/pubs/sp/800/204/d/final

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 10

We think of these as exploitable
weaknesses in software that accrue
due to dependencies of that
software—a problem that compounds,
since many projects have a large
number of dependencies, which
themselves have other dependencies
of their own, and so on.

For example, Log4Shell was a supply
chain vulnerability that affected
millions of Java-based applications
and devices. This vulnerability sent the
software industry scrambling to patch
and update affected Log4j packages
when it was discovered that a feature
set created for innocent reasons could
be exploited to gain remote code
execution on a remote host merely
by entering some trivial inputs on a
web form. This vulnerability was in
part so impactful because Log4j was
a package that often occurred deep
in a piece of software’s dependency
graph, as many as twelve layers of
dependencies down.

There are two main areas of concern
in supply chain security: dependency
tracking to enable fast reaction in
case of compromise, and tampering
protection to prevent compromises
through malicious modifications to
software artifacts.

Dependency tracking

Dependency tracking is useful for
managing both vulnerabilities and
software licenses. When a software
project imports a pre-existing
software library to enable parts of its
functionality, it may inherit security
vulnerabilities as well as licensing
restrictions from this dependency.

If a widely-used software library or
component contains unexpected
behavior that can be exploited, then
any other packages which rely on it
might be vulnerable. However, this
isn’t guaranteed—for example, the
vulnerable code path might not be
exercised in many of the packages
which include it.

https://security.googleblog.com/2023/04/announcing-depsdev-api-critical.html
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://blog.deps.dev/log4j/
https://blog.deps.dev/log4j/
https://blog.deps.dev/log4j/

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 11

Figuring out if vulnerable code
is being executed with certainty
is hard, as it is often an undecidable
problem. Approximations rely on good
instrumentation and logging practices
in order to enable post-hoc analysis.
Additionally, even when packages
have been determined as definitely
vulnerable, patching is a difficult
process: the primary bug needs to
be fixed, and then the patch needs to
be rolled out gradually and iteratively
to all the downstream dependencies
which are implicated. As the Log4Shell
incident showed, this is a difficult
process when there are many layers
of dependencies between your
software and the affected package,
since some language ecosystems
require multiple intermediate updates
before a downstream package can be
fully patched.

The Software Bill of Materials
framework (SBOM) helps us encode
dependency relationships by
providing a list of “ingredients” in
a piece of software.

SBOM isn’t a complete solution yet,
but it enables further progress on
industry-wide dependency discovery
so that we can track, measure, and
eventually remediate the spread of
vulnerabilities across our software
ecosystems.

SBOMs can also be used to track
software licenses associated with a
software artifact. Software licenses
are used to specify the intended
use of open source libraries in
applications that include them. When
an organization tracks all of the
software licenses used in its software
artifacts, and takes care to use the
software appropriately, it can ensure
that it respects the intentions of open
source library authors.

https://www.ntia.gov/page/software-bill-materials

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 12

When a user downloads a software
application, how can they ascertain that
it behaves according to its intended
source code specification, rather than
including nefarious changes?

Tampering

Figure 2 demonstrates some of
the critical points at which an
attacker or a malicious insider might
inject unexpected code into an
application throughout the software
development lifecycle.

Figure 2: Supply chain risks associated with creating a software artifact.

Supply chain risks in traditional software

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 13

In particular, an attacker could modify
a software artifact’s behavior by
making unapproved changes to the
code, the build system, any relevant
binary dependencies, or the package
repository in which the artifact is
ultimately published. Solutions like
Supply-chain Levels for Software
Artifacts (SLSA) help software
providers adopt best practices in
maintaining a chain of cryptographic
custody linking source code to the
eventual software applications.
This chain is represented by a signed
provenance document: a tamper-
proof attestation of how a software
artifact has been produced.

Signed provenance is designed to
supplement SBOMs by imposing
additional tamper-resistance
mechanisms on the chain.3
Provenance also supplements the
information about the source of
the artifact and required runtime
dependencies with further information
about the build (the tools and
processes used to create the artifact)
and build dependencies. In short,
an SBOM provides information about
what is in an artifact, whereas signed
provenance provides tamper-proof
information about both the what
and the how for details around an
artifact’s creation.

3.	 https://slsa.dev/blog/2022/05/slsa-sbom

https://slsa.dev/spec/v1.0/
https://slsa.dev/spec/v1.0/
https://slsa.dev/blog/2022/05/slsa-sbom

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 14

The following section applies the
analysis of traditional software supply
chains to AI software supply chains,
to illustrate the similarities and
differences.

Dependency tracking: As with
traditional supply chains, it’s
important to find and fix bugs that
get introduced into AI artifacts and
infrastructure. With AI, though, a new
class of dependencies emerges: the
datasets which have been used to
train a model. The tracking ability
is relevant not just for security
and privacy concerns, but also for
governance of use restrictions based
on copyright, similar to concerns
related to software licensing.

Artifact integrity: The ability to sign
and verify an AI model and know that
it hasn’t been tampered with, similar to
signing a traditional software artifact.

AI software supply chains

These two domains of concern
discussed immediately prior—
dependency tracking and tampering—
also apply to AI software supply
chains, but with slightly different
framing for AI-specific aspects:

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 15

To understand how these concerns
differ when applied to AI, let’s take
a look at how AI applications are
usually developed, without going into
particularities about specific models.

The central concept for AI-powered
applications is the model4. From
a high-level view, a model can be
viewed as a pairing of code and
weights, created as part of a
training process, that is only useful

when deployed in AI-powered
applications. The purpose of a
model is to extract statistical
patterns from data and use these
to make predictions (also known
as inferences) on new data for
applications that use AI. At this high
level, the process looks like the
following diagram:

Figure 3: The lifecycle of an AI model: an AI developer chooses a model architecture and uses external
datasets, pre-trained models, and a model training framework to train a model. The model is deployed to a
model hub from where it will be downloaded later to be used in production for inference.

ML model development lifecycle

4.	 It should be noted that securing the model alone is not enough to secure an AI system. You also need to protect its
training data, the infrastructure used to train and serve the model, and the application that uses the model.

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 16

The following brief introduction to
training AI models focuses on aspects
of development that are relevant to
supply chain risks. There are multiple
types of models, of various formats,
sizes, and different purposes; however,
the main supply chain concerns apply
similarly for all cases. As the diagram
indicates, the high-level story is quite
similar to the development of traditional
software.

Datasets

To begin training a model, we need
data from which to extract patterns.
Datasets are arguably more important
than the model architecture source
code: no matter how complex a model
is, it can only perform well when trained
on suitable data. Thus, data sourcing
requires practitioners to ask a few
questions early on:

•	 What is the intended use case for the
system—what task does it help with?

•	 What questions need to be
answered for the task the model
needs to perform?

•	 What data could train the model to
answer these questions?

•	 What sources of data might fit the
needs of practitioners and end
users?

•	 Is the data high-quality, complete,
accurate, and relevant?

•	 Are there any ethical and legal
issues associated with the datasets
used in training?

Once adequate data sources are
identified and acquired, practitioners
ingest them into local storage to
enable faster training. Here, we see
the first supply chain risk: (a)5 data
could be maliciously poisoned before
or during its ingestion process.

Once the data is ingested, it usually
needs cleaning and transforming,
processes that are collectively known
as data augmentation. The data might
need new labels to help train the
model; it may contain low-quality,
duplicated, or inconsistent records; or
it might be in a different format than
the task requires. If a practitioner is
using multiple datasets, they might
also need to resolve inconsistencies in
formatting and content.

5.	 The risks discussed in this section are labeled with the same letter in Figure 5.

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 17

Human and algorithmic labelers can be
used to label, filter, or transform the
data. From a supply chain perspective,
humans might maliciously mislabel
the data. Alternatively, an algorithmic
labeler might have a bug that results in
improper data transformations. All of
these then impact the performance of
the trained model. This is another supply
chain risk: (b) unexpected (malicious
or incorrect) training data can be used
to train a model. From the point of
view of the training process, this risk
encompasses data poisoning (risk (a)
above), but this one is more general, as
it impacts an artifact seen by end-users.

Some examples of transformations
include:

•	 Removing duplicate records
•	 Supplementing missing fields from

another dataset
•	 Changing the format or scale for

specific fields
•	 Adding new examples by

transforming existing data points
(e.g., rotating an image)

•	 Increasing the amount of data
available for training by generating
synthetic data using a different model

Since all of these transformations
result in datasets that are different
from the ingested versions, from a
supply chain integrity perspective,
we need to keep track of these
operations. This gives rise to the
notion of lineage: metadata to
capture all pre-training
transformations that have been
performed on datasets and
their resulting models. Lineage
resembles provenance in the
traditional software supply chain, but
provenance is broader, since it also
covers infrastructure metadata and
cryptographic signatures for inputs
and outputs. Since data used during
training is critical to a model’s
post-training performance, it
is essential that we capture all
the supply chain lineage and
provenance information related to
dataset operations. Lineage and
provenance will form the foundation
for governance of AI models, including
establishing policies and controls
for what copyrighted materials are
acceptable for training a model.

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 18

Models

Models are the central concept in
developing AI-powered applications.
At a very high level, a model is a
collection of weights—parameters
that determine how each feature
(data attribute, data column, etc.)
influences the output. To train a model
means adjusting the weights until the
predicted output is close to example
target labels from the training
dataset. The distance between the
example labels and actual labels is
measured by a loss value, which the
training process aims to minimize.
(For an introductory explanation
of the process, see this Machine
Learning crash course.)

As a light-hearted example, imagine
the task of selecting a daily lunch
for a picky eater. You might consider
many factors: what they ate last;
the suggested food’s temperature;
its color; the flavors it contains;
nutritional value; texture; the time of
year; whether the picky eater is dining
alone or with friends. Some features
will play a larger role than others,
or sometimes their weights might
depend on other feature values.

By categorizing all these features and
tracking the picky eater’s preferred
menus, you can learn the features’
weights over time, allowing you to
gradually infer a decision tree that
helps you plan better menus in the
future.

The same concepts of features, target
labels, and loss are also used when
developing more complex models,
including large language models
(LLMs) and multi-modal foundation
models (models trained on large
amounts of data to perform a large
variety of tasks). Here, the model
performs multiple computations,
merging data and weights to create
intermediate computations. The
results of these computations are
then mixed with other weights and
computations in an iterative process
until the final prediction can be
produced.

The resulting model architecture
is called a computation graph: it
represents the forward flow of data
from input through to prediction. This
graph records all the computations
that occur during inference.

https://developers.google.com/machine-learning/crash-course/descending-into-ml/linear-regression
https://developers.google.com/machine-learning/resources/intro-llms
https://developers.google.com/machine-learning/resources/intro-llms
https://research.ibm.com/blog/what-are-foundation-models
https://research.ibm.com/blog/what-are-foundation-models

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 19

Training large models from scratch is
expensive, taking massive amounts
of time and resources. Frequently,
developers will start with a pretrained
model to reduce this burden and
then construct a new model on top.
For example, a developer could take
a pretrained model and perform
transfer learning on it.

Transfer learning teaches a
model trained for a specific task to
perform a different task. Finetuning
is a type of transfer learning
that freezes most of the model
weights and updates only the last
few computations in the model
architecture.

Figure 4: An overview of the transfer learning process. A generic model is trained on a generic dataset to
perform efficiently on a generic task. For finetuning, the first stages of the model weights are frozen and
the model is trained again on a task-specific dataset.

Transfer learning process

https://www.tensorflow.org/tutorials/images/transfer_learning

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 20

These techniques allow models to be
taught new tasks with less cost than
training from scratch. For example, a
developer could take a model that was
trained against a large general-purpose
image-recognition dataset and finetune
it against a much smaller set of medical
diagnostic scans to yield a model that
detects abnormalities in X-ray imaging.
Similarly, the components used for
language and grammar representation
in a LLM can be reused in a new model
that performs well on specific
categories of text generation.

As we finetune pretrained models for
specific applications, we need to make
sure that the supply chain metadata is
properly recorded. This means capturing
provenance for every training dataset,
metadata from any training processes,
and (because a generic model might
have been trained by a separate entity)
the provenance of the pretrained
model. A generic model that is not
well protected or provenanced could
represent a supply chain threat for any
models derived from it—(c) it could have
been maliciously trained (to include
backdoors or perform poorly on specific
tasks), or it could have been tampered
with between training and finetuning.

Other model development scenarios
involve combining the output of
multiple models into a larger model.
As an example, consider a technique
called Mixture of Experts (MoE).
With this technique, each individual
model can solve a part of the problem
space, but does not perform well in
other cases (such as when specific
types of features are present). By
synthesizing the predictions of each
individual model, we can achieve a
model that has a better performance
overall. When using MoE, we again
need the provenance metadata for all
involved models in order to have full
visibility into the supply chain of the
final model used in production.

Model serialization

Once the model is trained, we put it
to work by adding it to a production
pipeline. For example, we could
create a web application to generate
real estate listings based on some
key inputs. In order to create such
applications, we need to serialize
our model and may then choose to
store it in a hub, from which it can be
downloaded for each new application.

https://huggingface.co/blog/moe

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 21

Serialization allows us to transfer
models into new environments, which
is useful because the hardware and
infrastructure used for training is
generally different from production
inference infrastructure. From the
supply chain integrity perspective, we
need to ensure that the model cannot
be tampered with while in storage (risk
(d) in Figure 5).

One approach to model storage is to
record the weights in a file, which each
application parses before using the
model. This is known as checkpointing
and is widely used during training,
where AI practitioners periodically save
the weights from long training loops.
If the process aborts or misbehaves,
training can be restarted from the last
set of weights or checkpoints.

There are a few approaches for
serializing models into checkpoint files:

•	 Using predefined serialization
features provided by a language—
for example using pickle in Python.
Depending on the implementation,
this can be insecure so we don’t
recommend it—the SafeTensors
library is a good replacement.

•	 Using a library to store the weights
in a format that is understandable
by the library—for example, for
a model trained using numpy, we
could save the checkpoints in a file
following the NPY format—which
can be insecure in some cases
too. However, this means that
every inference application must
reuse the same code used during
training. Because this creates a hard
dependency between the training
code and the inference code, we
don’t recommend this for more
advanced models.

•	 Packaging both the weights and
the model architecture into a single
entity. This can be a single file
(for example a flatbuffers file for
.tflite models used by TFLite
or a zipped package for .pth
Pytorch models) or a structured
collection of files and directories (for
example, a TensorFlow SavedModel).
Sometimes, large models that would
otherwise be stored in a single file
are also split into multiple files to
speed up loading. Note that even
these formats can be insecure, for
example .pth files can use pickle
and SavedModels can use Lambda
layers to run arbitrary code.

https://huggingface.co/docs/hub/en/security-pickle
https://huggingface.co/docs/safetensors/en/index
https://huggingface.co/docs/safetensors/en/index
https://numpy.org/devdocs/reference/generated/numpy.lib.format.html
https://flatbuffers.dev/
https://www.tensorflow.org/lite/guide
https://pytorch.org/docs/stable/package.html
https://www.tensorflow.org/guide/saved_model
https://github.com/Azure/counterfit/wiki/Abusing-ML-model-file-formats-to-create-malware-on-AI-systems:-A-proof-of-concept

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 22

Bundling weights and architecture
into a single package format allows
developers to transfer models between
applications more easily, as long as they
integrate an interpreter for the model
format in their AI-powered application.
The interpreter parses both the model
structure and the weights to construct
the appropriate memory layout to
perform the inference.

A single package also allows the
interpreter and the framework used to
train the model to evolve separately.
As long as compatibility is maintained,
models trained with one version of
the framework can be used with an
interpreter matching another version.
For some of the existing serialization
formats, it’s possible to achieve both
forward and backward compatibility,
achieving a full decoupling between the
training process and the applications
that use the models in production.

Since model serialization represents
creating a new artifact in our supply
chain—namely a checkpoint—this
is another place where we should
record provenance memorializing the
operations performed (risk (c) in
Figure 5).

Recording complete provenance for
each new artifact or checkpoint helps
developers track risks introduced
during storage or model serialization.

After a model has been recorded,
it might also undergo model
quantization. This process takes
a fully trained model and shrinks it
by converting its weights into low
precision integers, and, in some
cases, also replaces operations in the
model’s computational graph with
operations that can operate on the
quantized weight. This increases the
efficiency of the model, especially
when it gets deployed to embedded/
mobile applications, by allowing
integer operations to consume fewer
computational resources and less
time. The loss of precision from this
conversion is not significant enough
to cause the model to mispredict
during inference.

The process of quantizing a model
is also building a new artifact, so we
need to record the associated supply
chain metadata to maintain the
provenance of the updated model
(this is also represented in Figure 5
by risk (c)).

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 23

Overall, we need to remember that
models are not easily inspectable:
the behavior of a model is heavily
influenced by its weights, yet given the
large number of weights and binary
format, it is not humanly possible to
analyze the weights to predict what
a model may do. In some storage
formats, it is also difficult to analyze
the computational graph. Instead, we
adopt the point of view that models are
programs; they are similar to bytecode
that is interpreted at runtime to
produce some valuable set of behavior.
However, unlike traditional software
where it is feasible to understand a
binary via reverse engineering, models
are opaque, meaning their behavior
can be only partially understood
by observing a small fraction of all
possible inputs. Given the expense of
building models, there is a clear need
for complete supply chain provenance
information. In case of an attack on the
training platform, for example, we can
use this information to quickly identify
which models need to be analyzed and
retrained to remove potential tampering
(risk (e) in Figure 5).

Training framework

AI practitioners generally don’t
write code from scratch to train
models. Instead they use libraries
optimized for operations that can take
advantage of the available hardware.
Powerful libraries—such as JAX,
TensorFlow, and PyTorch—are able to
use hardware accelerators—GPUs and
TPUs—on the training host machine to
significantly improve training speed.
For large models, the framework can
distribute computation across multiple
hosts, managing scheduling and
network communication optimally.

These features make training
frameworks complicated, allowing
opportunities for vulnerabilities to
be introduced (risk (f) in Figure 5).
The training libraries are therefore a
critical part of the supply chain, since
they can produce models that have
been affected by a vulnerability.

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 24

Recording provenance about training
frameworks allows us to identify
models trained with frameworks
later found to have a bug in the
implementation of some math
operation, or in the way they compile
model-specific code to run on
hardware accelerators.

Evaluation

When training models, we want to
make sure they perform effectively
on examples of their task, without
overfitting6 to the specific examples
they were trained against. There are
multiple junctures during the process
where we evaluate performance:

•	 Automated testing during
training: This uses a dedicated
portion of the training data. Instead
of giving that data to the model
during the training loops, it is used
to evaluate the model at every
checkpoint, as a proxy for the
model’s performance on data not
seen during training.

•	 Human evaluation during
training: LLMs and foundation
models are also evaluated by
humans during training using
reinforcement learning with human
feedback (RLHF). Periodically, a
checkpoint is used to answer a
variety of prompts, and humans rate
the answers. This provides a signal
to the model on what answers are
suitable for the prompt, and the
training process will update model
weights accordingly.

Since RLHF and similar techniques
influence the resulting model, we
should capture provenance to
incorporate information about these
processes in the AI supply chain.
If test data were manipulated, or a
human rater maliciously encouraged
incorrect answers, this could influence
the behavior of the model (risks
(a), (b), (c) in figure 5); recording
provenance lets us detect the impact
of such manipulations when they are
discovered.

6.	 Overfitting is when a model performs exceptionally well on the training data but fails on new data.

01 — Development lifecycles for traditional and AI software

Securing the AI Software Supply Chain 25

Larger models, such as LLMs and
foundational models, are also
evaluated after release, often by third
parties. These evaluations are similar
to integration tests or acceptance
testing in traditional software: they
don’t change the software, but they
allow an organization to decide
whether it performs as expected
before admitting or deploying it.
Organizations with an emphasis on
production hygiene and observability
may choose to perform such tests
in a trusted execution environment
and record the results in a signed
attestation, so that they can ensure
models have been adequately
evaluated before use (risks (g) and
(h) in Figure 5, where (h) occurs
once the model has been used
inadequately in production).

https://github.com/openai/evals

AI supply
chain risks
This section discusses in more
detail how the AI development
lifecycle described previously
can lead to AI-specific supply
chain risks.
In many ways, the process by which one trains,
publishes, and serves a model strongly resembles
the traditional software development lifecycle
(SDLC). We can consider that the training process
(or data transformation when doing dataset
enrichment) represents a “build.” The “sources”
and “dependencies” of the build are represented
by the training framework, the code used to define
the model architecture, and the datasets. Finally,
the resulting “package” is the model (or training
data in the case of dataset augmentation).7

02

7.	 Again, the “SSC Model” in §2.4 of NIST SP 800-204D, “Strategies
for the Integration of Software Supply Chain Security in DevSecOps
CI/CD Pipelines” is a useful abstraction of these concepts — with
equal applicability to AI as to traditional software.

02 — AI supply chain risks

Securing the AI Software Supply Chain 27

In the previous section, we have
shown that training a foundation
model involves multiple components
and processes:

1.	 Starting with datasets, we perform
multiple data cleaning and data
augmentation steps.

2.	 We choose a framework with which
to train a new model, combining
the cleaned and augmented data
with previously trained models.

3.	 The model is recorded as a
checkpoint, and possibly quantized
into a smaller footprint.

4.	 The checkpoint is stored in a
model hub.

5.	 The checkpoint then serves future
training steps or gets deployed in
AI powered applications.

Every step can be affected by
unintentional flaws or design choices
that can result in supply chain
compromises. To summarize the risks
we identified as we walked through
the model’s lifecycle previously:

Similarities to traditional supply chain risks

•	 Data could be maliciously or
inadvertently poisoned, either at
ingestion or during curation and
cleaning.

•	 The training platform might be
vulnerable to attacks.

•	 Training frameworks and libraries
may contain vulnerabilities or
backdoors which affect their
computations. For example, model
checkpointing or quantization code
could introduce changes to the
model architecture or weights in
possibly security-sensitive ways.

•	 Human raters, or automated
testing steps during training, could
introduce buggy or malicious
inferences.

•	 Model hubs could be compromised,
allowing a malicious developer to
poison model weights or datasets,
thus affecting both production uses
as well as future training steps using
pretrained models.

•	 When deploying the model to create
AI powered applications, developers
might inadvertently use inadequately
trained or evaluated models if they
receive a different model than
expected.

02 — AI supply chain risks

Securing the AI Software Supply Chain 28

Any of these risks could make a model
in production vulnerable to exploits.

Figure 5: The overall training of a foundational model and the associated supply chain risks

Supply chain risks in foundation model training

02 — AI supply chain risks

Securing the AI Software Supply Chain 29

In order to secure this complex
system and ensure security for model
supply chains, we should analyze how
every step of this process works as a
whole (Figure 5) and individually. Since
training is the common factor in any AI
supply chain, let’s look at the training

When we compare the AI supply chain in Figure 6 with the risks from the
traditional software supply chain from Figure 2, we notice clear parallels: namely,
they both incorporate notions of code, version control, deployment to a repository
or hub, and eventual download by a package consumer. These similarities inform
the risks and controls discussed later in this paper.

supply chain diagram and the associated
risks as representative of the risks across
the entire model development process.
This diagram of risks expands on the AI
model development lifecycle shown in
Figure 3:

Figure 6: Supply chain risks associated with training a model

Supply chain risks in ML

02 — AI supply chain risks

Securing the AI Software Supply Chain 30

As we just explained, AI development
shares a common shape with
traditional software development.
However, there are also some
practices in the software development
life cycle which diverge from the
current state of AI development.

Let’s take a look at some
characteristics of traditional software
development that may not directly
transfer to AI:

•	 Source control: Code is usually
stored in a version control system.
This lets developers collaborate on
a shared codebase, track the state
of the codebase over time, and
roll changes back or forward as
needed.

•	 Code review: Many organizations
use code review as a tool to ensure
that new code changes match
their standards for readability or
correctness.

Differences specific to AI development

•	 Hosted, scripted builds: To
transform the code into a package,
many organizations use a hosted
build system that follows a set of
predefined configuration steps.
This automation allows for higher
consistency across developers and
release cycles, and it also reduces
the burden of maintenance on each
individual developer.

•	 Short, cheap build cycles: If
a developer discovers that a
recently-built package contains
bugs, or decides that they’d like
to change some functionality,
they can start a new build without
incurring much additional overhead
(perennial complaints about build
latency notwithstanding).

https://xkcd.com/303/
https://xkcd.com/303/

02 — AI supply chain risks

Securing the AI Software Supply Chain 31

When we look at AI development, these
attributes may differ in significant ways:

•	 Immature version control for
datasets: The ecosystem for storing,
changing, and retrieving datasets is
generally less opinionated and robust
than the corresponding ecosystem
for code management. The huge size
of most datasets also adds additional
constraints to the robustness of
version control solutions. This means
that the contents of a given dataset
may change through cleaning,
copying, and extension, often
without incurring an explicit semantic
versioning bump.

•	 Human review for data is
challenging: Training datasets are
large and may be updated frequently.
It could be expensive or infeasible
to perform human review with
high confidence after every data
transformation.

•	 ML training is not usually
fully scripted: ML training
often comprises a series of ad-
hoc incremental steps that are
not recorded in any central
configuration. It may also span a
series of systems and frameworks,

rather than running entirely within
the confines of a single hosted build
system. Training can also rely on
specialized hardware, which makes
it more difficult to apply sandboxing
techniques commonly used in
hosted build systems. The gold
standard of hermetic, reproducible,
and deterministic builds is much
more difficult to achieve when
training ML models.

•	 Long, expensive training cycles:
Because training is expensive, many
training libraries support additional
ways to “sideload” new data or code
into already-running processes.
This means the control plane for
injecting inputs into ML training is
more diverse and complicated than
a traditional build system.

Since data version control is less
mature than code source control, it’s
harder to track the provenance of
datasets as they are prepared and
made available for training. Likewise,
since training processes can be more
complicated than build processes,
it becomes correspondingly more
difficult to track the provenance of
model inputs and outputs as they flow
through training.

Securing the AI Software Supply Chain

Controls for
AI supply
chain security

The following section discusses
the available controls that can
protect against key AI supply
chain risks.

03

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 33

Though there are differences between
traditional and AI development
processes and risks, we can adapt
traditional approaches, such as
applying protections designed
for code to also cover data. For
example, we can extend the concept
of provenance to cover data
transformations, extending on what
ML practitioners call lineage. There’s
no need to reinvent the wheel.

An end-to-end approach to AI supply
chain security should address the
two needs discussed previously in
this paper: tracking all dependencies
of the AI-powered applications,
starting from data and ending with the
production model, and ensuring the
integrity of all artifacts.

In order to meet these needs, an
organization should work toward
being able to confidently answer a
series of questions about AI models
used in production:

We believe that traditional supply chain solutions can
and should be extended to apply to AI development.

•	 Who created the model?
•	 What was the system used to

train the model? What systems
processed the dataset?

•	 Has the model been changed in
any way since it was published?

•	 Which version of the model is this?
Which versions are in production?

•	 What data sources were used for
training, testing, and evaluating the
model?

•	 How were the data sources
processed or cleaned before
training?

•	 Which code frameworks were used
to train, test, and evaluate the
model?

•	 Which evaluations have been run
on the model?

•	 Are the datasets appropriate for
use in the given training context?

•	 Do the datasets have any specific
attributes (copyrighted data,
licensing restrictions, location data,
etc.) which require specific care
and approvals before training?

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 34

To answer crucial questions about
supply chain security, an organization
can focus on areas where they can
move the needle of AI supply chain
security in a relatively short time.

This includes:

Protecting integrity for the
production systems8 which
process, train, or serve AI models.
Organizations need to ensure that
all the infrastructure used in pre-
processing, training, fine-tuning,
or serving is secure and resilient
against software supply chain threats.
Because this is a fast-moving space,
it can be challenging to ensure that
systems remain compliant as they
evolve or add new features.

Cataloging provenance for all
datasets and AI models. In addition
to securing the infrastructure used
by AI training and serving workflows,
we also need to understand the
provenance of the datasets (used
either for training or benchmarks) and
models themselves. What are all the
inputs used to produce a model?

Guiding principles

Which datasets does the organization
store and use, and what are their
relevant properties?

Tracking the provenance of AI
artifacts means comprehensively
recording usage relationships
between them. Besides enabling
supply chain integrity, provenance
also helps speed up launch approvals
(determining if an AI-powered
application can be released as a user
facing product) and debug behavior
that is observed in production (e.g.,
determining if a bug in a compiler
used during training or serving
a model affects the results of an
inference of a model).

Protecting models against
tampering and datasets against
poisoning. Even if a model is trained
on secure infrastructure, it can still be
vulnerable to further tampering.

8.	 Chapter 14: Deploying Code of Building Secure
and Reliable Systems is a good reference for how
to protect the integrity of production systems for
traditional software. Many of the items presented
there apply to the AI world, too.

https://google.github.io/building-secure-and-reliable-systems/raw/ch14.html
https://sre.google/books/
https://sre.google/books/

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 35

For example, an attacker could copy
the model and fine-tune a new version
against a carefully curated set of data
that causes it to issue objectionable
inferences, or an insider could
surgically overwrite some of the model
weights to cause unexpected behavior.
Targeted supply chain attacks have
already been demonstrated against
models in the wild, with one proof-
of-concept attack that surgically
modified a popular model to spread
misinformation and uploaded it at a
legitimate-looking repo path to deceive
users into downloading it.

For models as well as some datasets,9

it’s possible to mitigate against
poisoning by annotating artifacts with
signatures and provenance. This also
speaks to the importance of robust
data cleaning processes: if the data
cleaning processes are properly
tracked in provenance documents,
an organization can detect poisoning
by insiders. An organization can also
mitigate against poisoned data that is
imported from external sources at the

start of the supply chain via early data
cleaning practices.

Discovering and patching or replacing
buggy or vulnerable artifacts. Because
training undergoes many iterations,
adding more data and code throughout
the process, vulnerabilities could creep
into a model in many ways. To prevent
exploitation and enable remediation,
we must track all the inputs—both code
and data—that were used to produce
models. Likewise, we must maintain an
accurate inventory of all the models that
an organization uses or produces, so
that we can respond to vulnerabilities as
they arise.

In addition, because AI development
relies on large-scale data processing, it
also inherits classes of problems related
to data curation and sharing.

Preventing accidental or malicious
data rights infringement. This concern
has become increasingly important in the
AI context. In particular, we highlight the
need to ensure that training processes
can consume only approved datasets.

9.	 Datasets can be gathered in two different ways. The first type of dataset can be imported as relatively stable,
versioned artifacts: e.g. a public domain dataset that is imported, cleaned, and stored at discrete intervals. This
kind of dataset can be treated similarly to other kinds of software artifacts, and lends itself to signatures and
provenance tooling quite nicely. However, not all data fits this shape: for example, if you consider dynamically-
generated database records, such as anonymized search logs that are continuously written based on real-world
interactions, this might demand a more specialized approach.

https://www.wiz.io/blog/38-terabytes-of-private-data-accidentally-exposed-by-microsoft-ai-researchers
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
https://www.ft.com/content/61008a05-1752-48bc-bf7a-6a4643c0cf27

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 36

The following section discusses
Google’s internal approach to supply
chain security for AI models.

This paper focuses primarily on the
integrity and data provenance aspects
of the AI supply chain concerns
discussed earlier. Vulnerability
management is an expansive topic
that will be covered in more depth in a
separate white paper, but the solutions
discussed here support and enable
a robust vulnerability management
program.

Our approach to AI integrity is to
extend the existing supply chain
security work we’ve done over the past
decade using Binary Authorization for
Borg (BAB), Supply-chain Levels for
Software Artifacts (SLSA), and next-
generation cryptographic signing
solutions such as Sigstore. We also
use specific tooling to catalog data
and capture the information about
AI artifacts that could be used for
security controls, governance, and
other AI-specific concerns such as
copyright infringement.

Google’s approach: BAB, SLSA, and artifact integrity

BAB and SLSA address nearly every
risk discussed in this paper; the
remaining risks are addressed by data
cataloging for AI artifacts.

Binary Authorization for Borg

BAB, or Binary Authorization for Borg,
refers to the controls that ensure that
only authorized binaries can run on our
production cluster management system
(“Borg”).10

BAB was first conceived to protect
against insider threats. Within
development teams, everyone knows
and trusts one another; yet, statistically
as an organization grows, the risk also
grows that a bad actor might try to
tamper with code or data. In addition,
there is the risk that a development
team member’s workstation might be
compromised by an external attacker
who then uses the team member’s
privileges to tamper with code or data.

10.	 BAB is also known as BCID, which stands for
Binary and Configuration ID.

https://cloud.google.com/docs/security/binary-authorization-for-borg

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 37

To counter this, BAB was introduced
to prevent unilateral access: no single
person could make an unapproved
change to code in production. Over
time, BAB’s guarantee has expanded.
It now ensures that all released
software is free from tampering and
its contents are well understood.

BAB policies ensure that:

•	 Code changes have been reviewed
and approved by multiple people.

•	 The artifact was built on an
approved build system hardened
against tampering.

•	 The build was verifiable, meaning
that the binary or package
produced by the build can be
verifiably audited by examining
metadata which identify all source
code used for
the build.

•	 Metadata (provenance) was itself
captured in a tamper evident way.11

•	 The configurations for jobs that
host software services are also
protected against unilateral
modification.

Similar to a very detailed SBOM,
this provides deep visibility into the
source dependencies used to create
an artifact in production. Additionally,
the isolation and cryptographic
signing requirements imposed by
BAB upon Google’s build systems
enable us to trust that the artifact
was not tampered with either during
or after creation.

BAB is now used across Google
to enforce technical policies
around production integrity. By
using technical means to enforce
supply chain integrity policies at
scale, Google reduces insider risk,
promotes reliability and uniformity,
and enables thousands of teams to
comply with SDLC-related standards
with minimal overhead.

11.	 There’s a difference between simply capturing
provenance and capturing secure, tamper-
evident provenance. We consider only the
latter to be useful for supply chain protections.
Secure provenance is generated at the time of
an artifact’s build, in an isolated environment
on a trusted builder that is protected from
interference. Cryptographic signatures ensure
that the provenance is not tampered with after
generation.

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 38

To enact technical change at large
scale, we leaned on two key principles:

•	 We defined supply chain integrity
as a ladder to climb, rather than an
all-or-nothing “moonshot” effort.
We gradually defined, implemented,
and rolled out a series of smaller
improvements that built on one
another to create large reductions
in attack surface over time.

•	 We worked with infrastructure
owners across Google to implement
“secure by default” systems. For
example, Google’s hosted build
service now signs its builds with
extensive provenance metadata
by default, requiring no behavior
change from users. We’ve also
automated the policies which
govern provenance verification and
admission control on Borg, reducing
the security burden for teams that
deploy services at Google.

Supply-chain Levels for
Software Artifacts

In 2021, we externalized BAB as SLSA,
or Supply-chain Levels for Software
Artifacts, so that other organizations
could benefit from our decade of
progress. Soon after, we donated
SLSA to the Open Source Security
Foundation (OpenSSF) for cross-
industry collaboration. SLSA has been
expanded from its Google-specific
roots to now be useful to organizations
and software producers of all sizes,
including open source software
producers and project maintainers.

Like BAB, SLSA is organized into
well-defined levels, each laying
out increasingly rigorous security
expectations. This is intentional to
enable systematic organizational
change: a given team, department, or
operational domain can begin scaling
the ladder at any point, with each rung
reachable from the previous.

When using BAB to secure Google’s
production systems, this progression
of levels provided an essential
structure for transforming the maturity
of security controls.

https://slsa.dev/
https://openssf.org/
https://openssf.org/
https://slsa.dev/spec/v1.0/levels

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 39

Similarly, SLSA provides a clear road-
map with benchmarks, assessments,
and goals. The leveled structure makes
complex changes more manageable by
defining clear standards and achievable
steps to reach them. The framework
also creates a common vocabulary and
context for change initiatives. This fos-
ters clear communication and alignment
across teams and departments about
expectations and progress.

This latter point—shared language—
speaks in turn to a major benefit
brought by the SLSA framework in the
industry at large. As well as outlining
supply chain best practices, and
enabling automated policy to manage
and mitigate risk, SLSA has provided
a shared vocabulary and conceptual
model for the problem space as a
whole, which is applicable in turn to
the AI supply chain space.

Model provenance

Across Google’s first-party and open
source AI development ecosystems,
we’re in the process of adopting the
SLSA framework and format to sign
model provenance.

This metadata document cryp-
tographically binds a model to the
service account—an identifying
account that represents an applica-
tion rather than a human user—that
was used to train it. It will also en-
able Google to verify all of its models
against the expected signing keys,
such that an insider cannot overwrite
or change the model (including the
weights that determine its behavior)
without detection.

Achieving higher SLSA build levels is
particularly challenging for models
compared to other software types,
because training is long, resource-
intensive, and difficult to sandbox.
We’re currently exploring approaches
to harvest provenance from Google’s
existing comprehensive data-access
logging infrastructure, instead of
relying solely on AI platforms to
provide the entire bill of materials.

This will enable us to extend the
signed SLSA provenance certificate
to include additional metadata about
the data used to train the model:
data provenance.

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 40

Data provenance

For complete understanding of what
is in a model, we must also understand
the data that was used to train it.
Data provenance entails recording
the source of all data examples used
during training and evaluation of
models. If data is transformed prior
to training (e.g., for data cleaning
purposes), we recommend building
a separate dataset with its own
associated provenance document,
linking to the original data.

Currently, data provenance does not
convey the supply chain integrity
of data. As mentioned earlier, we
are investigating ways to annotate
datasets with their own signatures,
which would provide the integrity
to know whether they had been
tampered with after signing. We
currently have open questions about
the granularity of record keeping: we
could just record the datasets by a
URI, or we could cryptographically
encode every record in the dataset
into a structure that would allow
detecting if a specific example has
been used during training or not.

There are also possibilities between
the two extremes, and we are analyzing
trade-offs along the spectrum.

Within Google, we provide tooling for
data and model cataloging to improve
both the distribution and discovery
of assets developed and used by
teams for AI model development and
deployment. The data and model
catalog is focused on the snapshot
and version of metadata, and the data
or model’s properties and attributes.
Entries in the catalog are closely
associated with the underlying asset
that is stored in one or many locations,
which in turn helps users short-list
the available assets that meet their
criteria for the AI project being worked
on, request access and compliance
approvals, and start using the asset
immediately thereafter.

Every dataset version and model
version is also issued a globally unique
entry ID that can be used as part of the
many data and model loading libraries
we support within Google. Using the
IDs, we are able to associate the
lineage of downstream jobs and tasks
back to the exact version or snapshot
of a dataset or model ingested.

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 41

Within Google, we record the following
asset metadata for models and datasets:

Model Attributes

Name

Unique Global Version Identifier

Date Created

Date Updated

Format

Location

Size

Owner

Schema

Documentation

SHA-256 Hash

Data Attributes

Name

Unique Global Version Identifier

Date Created

Date Updated

Format

Location

Classification results
(what the data is comprised of)

Owner

Schema

Documentation

SHA-256 Hash

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 42

Provenance collection is often an
afterthought for an organization but we
have learned that it is difficult to retrofit
this into model training workflows.
As a first step, it is important to have
rigorous bookkeeping for the artifacts
themselves. Every model and dataset
needs to have globally unique identifiers
and need to be immutably versioned as
a foundation for provenance collection.
Approaches that can reliably record
provenance include:

•	 Explicit Provenance Logging:
Recording lineage relationships
in I/O libraries such as data
ingestion or model checkpointing
libraries. The challenge is achieving
comprehensive coverage over all the
ways in which datasets and models
can be read or written.

•	 Infrastructure Log Harvesting:
Low-level infrastructure logs that
universally record all file accesses
can be mined for AI artifact
provenance, but it is often hard to
accurately relate low-level logs back
to models and datasets.

•	 Execution Sandbox: Ideally, AI
workflows like training or data
enrichment jobs provide a manifest
of inputs and outputs and a
sandbox restricts any access
outside of the manifest while
recording every input and output.
This requires organizational
mandates for all workflows to
be run within such an execution
sandbox.

Once an organization has provenance
for all steps in the AI supply chain,
they can construct policies that can
be evaluated automatically to detect
if a model is acceptable to be used
in production or for training a new
model. This results in a shift-left
approach to model development,
as usage of bad models or datasets
can be detected earlier in the
development lifecycle instead of at
launch approval stage, after costly
training and testing.

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 43

Google invests significantly in
securing the open source software
world, including support for SLSA and
the Sigstore project. In 2023, we open
sourced our work to apply existing
solutions such as SLSA and Sigstore
to AI.

In this section we are focusing on
open source solutions such as SLSA
and Sigstore for models that are
developed by authors that are in
a different organization than the
developers of the software system
that uses the models. These can
be open models (models whose
weights are available to end users),
or fully open source models (both the
weights and the training source code
are available). In either case, when
working with these models, we should
adopt a more stringent security
posture in which we consider the
model publisher as untrusted. We are
exploring the different types of claims
that can be made about the models,
and how these types of claims can be
publicly verified.

Solutions for third-party AI model development

Signing outside Google

For signing open models, we
recommend Sigstore, a free, public-
good service that simplifies code
signing and verification by abstracting
away most key-management
complexity. Sigstore’s public signing
ledgers form the foundation of trust for
SLSA provenance (introduced earlier
in this paper). Sigstore can be used
to sign artifacts after building them.
Users can then verify the signature,
proving that the artifact has not been
tampered with since it was built. Since
Sigstore’s signing process supports
using temporary or “ephemeral” keys
that expire shortly after the signing
event, there is no ongoing burden
for developers to maintain or rotate
keys long term. This addresses the
risk of a later key compromise that
would negate the signature. Like
SLSA, Sigstore’s benefits will also
be applicable to the AI supply chain
space.

https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://www.sigstore.dev/

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 44

Most immediately, we are considering
how models can be signed. This can
be seen as a claim made by the model
publisher that the user is seeing the
authoritative version of that model—
the one intended to be released by
the publisher. Note that we can make
a distinction between the publisher
of a model (the identity uploading
the model to the external model hub)
and the trainer of the model (the
identity that triggers the training
job that produces the model). The
threat model we are adopting here
may assume that the trainer might
not trust the publisher or the internal
storage system and might want to
protect the integrity of the model
during these steps.

For these purposes, we have a library
for signing models with Sigstore.
Depending on the threat model, the
library supports signing just the final
model or checkpoints during training.
For long training jobs running on
shared environments, it is preferable
to sign all checkpoints so that
attackers cannot force loading from a
corrupted checkpoint after a training
job is interrupted.

However, we are aware that
checkpoints can be huge and the
signing process can add delays,
so checkpoint signing is not active
by default. We are exploring
parallelization approaches for the
signing process, so that integrity
protections can be deployed without
large latency/efficiency costs.

We are planning to integrate the
signing library with model training
frameworks to enable transparent
signing of models without asking
model trainers to update their code.
We are also integrating the library with
model hubs to allow signing the model
when it is uploaded. The difference
between these two modes is that,
while signing as early as possible
ensures integrity for a larger part
of the supply chain, not all model
training frameworks might support
signing. Thus, rather than refusing to
upload unsigned models, model hubs
have the opportunity to offer signing
just before upload.

https://github.com/sigstore/model-transparency
https://github.com/sigstore/model-transparency

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 45

Once a model is uploaded, the model
hub can verify its signature and display
a specific label on a model card—a
public source of information for
models that’s similar to a README.md

file in code repositories. These short
documents are attached to models
and used to describe what the model
is, how it was trained, its use cases,
and other useful information. A label
indicating a verified signature in a
model card signals to users that the
model has integrity protections, and
security conscious users can also
validate the signature themselves
before loading the model in production.
We recommend that model verification
is performed, to cover the risk of the
model hub itself being compromised.

Furthermore, we are planning to also
offer signing for datasets to reduce the
opportunity window for data poisoning.
This would strengthen other mitigations
already implemented by data storage
systems.

Integrity outside Google

While artifact integrity helps in
detecting artifact tampering after
the artifact been built, in the longer

term, we are also considering
verifiable claims that can be made
about the model’s training pipeline.
We are exploring building control
features into existing training
environments that would allow the
model publisher to output verifiable
provenance about the model (e.g.,
its code dependencies, the training
environment, and even the training
data or pre-trained models that were
used). This is where SLSA for models
comes into play.

However, in order to achieve a
high level of SLSA assurance, the
provenance generator must run in an
environment that is not controlled by
the person triggering the build. This
means that we need custom reusable
trainers for AI models. These must
support hardware accelerators, a
requirement that is usually not present
in the traditional software world.

We are currently working on extending
the SLSA standards to include a
separate dependency track (to
enable reduction of risk arising from
using external dependencies) and
a separate source track (to provide
protection against tampering prior to
the build).

https://github.com/slsa-framework/slsa/issues/961

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 46

With the provenance in place, we
are also exploring more advanced
functionalities, such as verifiable
claims around the inclusion or non-
inclusion of a specific artifact in the
training data.

To begin with, we are considering
the use of the Croissant format for
describing the datasets. While this
was developed to streamline the
discovery and understanding of
external datasets, we can use it as
the canonicalization layer needed to
ensure that computing the digest of a
dataset can be done in a deterministic
manner.

As we mentioned earlier, a significant
component of the lifecycle of LLMs
is represented by post-training
evaluations. Currently, these
are performed without security
guarantees, relying on implicit trust
on the evaluator. We are thinking
of performing these evaluations
on trusted enclaves, reporting the
benchmark scores in a tamper-proof
way, using the in-toto attestation
framework.

Finally, we need to consider the
usage reviews when open models are
involved. The most common scenario
is when a new AI-powered application
is awaiting launch approvals, but we
are also thinking about how libraries
that use AI models can be safely
imported into a company’s internal
source control. In either of these
cases, we need a way to look at all
the associated supply chain metadata
(generated based on solutions
presented before in this section),
and combine them into information
that can be both human and machine
readable. This would enable faster
reviews, as well as automating and
shifting left of approvals for using
open models.

For this part of the problem space,
we recommend using Graph for
Understanding Artifact Composition
(GUAC), as it is the system of choice
to understand large supply chains
both in open source and at the
boundary between a company’s
internal systems and open source
software. With minimal changes,
GUAC can be used as a window into
the AI model development lifecycle,
as a tool for aggregating and querying
metadata across the AI supply chain.

https://github.com/mlcommons/croissant
https://in-toto.io/
https://docs.guac.sh/
https://docs.guac.sh/
https://docs.guac.sh/

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 47

Even given all the solutions already
at hand for AI supply chain security,
open questions remain and problems
still need to be solved. While we’ve
presented some of our opinions above,
we believe it would be fruitful to come
together as an industry to find common
consensus on the following open
questions in particular:
•	 What information should model and

data provenance contain?
•	 What format should be standardized

for model and data provenance for
interoperability?

•	 How and where should model and
data provenance be stored, shared,
and verified?

•	 What level of detail should model
and data provenance capture? For
example, when recording dataset
information in the provenance, do
we commit only to the name of
the dataset or to each individual
example in the data? The latter
would allow answering questions
regarding whether a specific piece
of information was used during the
training process, but it would be
larger and require more effort to
generate.

Open questions for industry consensus
•	 Should datasets be signed for

integrity? If so, are there additional
data-specific fields to add to the
SLSA standard?

•	 How can we protect model
training against consuming
untrusted sources or tampering
with provenance before it’s been
signed?12 Full sandboxing or
resource isolation seems difficult
and costly, so are there alternative
mechanisms to explore?

•	 Should model hubs support
provenance verification as a built-in
feature?

•	 Should the industry embrace ML-
BOM13 or provenance?

12.	 Full sandboxing or resource isolation is important
at higher SLSA levels to ensure that provenance
is protected from tampering during generation. To
apply the same sandboxing to the training process
seems difficult and costly. We are considering
whether there are alternative methods to explore,
such as reducing the burden of sandboxing during
the training process by leveraging observability into
dataset storage system logs as a supplementary
mechanism for fleshing out a provenance
document (“log harvesting”).

13.	 There is an industry discussion about extending
the SBOM concept to a new ML-BOM. However,
we feel that the SLSA provenance can capture the
same information about the supply chain, while the
remaining information in an ML-BOM is typically
present in a model card. This view might change in
the future, however, and we are looking at relevant
industry developments and will adapt as needed.

https://cyclonedx.org/capabilities/mlbom/

Securing the AI Software Supply Chain

Guidance for
practitioners
Each organization’s approach
to supply chain security will
look different, based on internal
processes and platforms.

But even if the approach to capturing and
handling the metadata needed for supply chain
insights will vary, the ultimate goal will likely look
similar: to build your supply chain with insight and
transparency. We suggest reviewing the Guiding
Principles section earlier in this paper about the
technical considerations to achieve this goal.

04

03 — Controls for AI supply chain security

Securing the AI Software Supply Chain 49

Capture metadata

Capture enough metadata to
understand the lineage of each
artifact (models or otherwise!). You
want to be able to answer basic
questions: where an artifact came
from; who authored it, changed, or
trained it; what datasets were used in
training it; and what source code was
used to generate the artifact.

Increase integrity

With time, work toward increasing
integrity of both artifacts and
associated metadata. Ultimately,
the metadata should be captured
during the artifact’s creation in a
non-modifiable, tamper-evident
way. The artifact itself should be
cryptographically signed using
next-generation signing techniques
that reduce the burden of key
management, to show whether an
artifact has been tampered with after
the fact.

Organize metadata

Organize the information to support
queries and controls. In the event of
an incident, you’ll be able to know the
blast radius of affected components.
At launch, you can enact appropriate
governance. During development,
controls will determine whether
artifacts meet guidelines for use.

Share with others

Finally, as a best practice, share the
metadata you capture in an SBOM,
provenance document, model card,
or some other vehicle that will
assist other developers. This type of
transparency into a model’s creation
increases trust and assists in tracing
unexpected behavior from a model
back through a complex supply chain
to discover the source of the problem.

An organization will be in a good position if it’s able to
do the following for all software and AI artifacts:

Securing the AI Software Supply Chain

Our approaches outlined in this white paper are
intended to guide industries and organizations
seeking to secure their AI software supply chains. We
believe that extending existing software supply chain
solutions is an effective way to counter many of the
risks associated with AI software supply chains. Rather
than creating new solutions, we can approach AI
models like traditional software. By diligently applying
established software supply chain security practices
and carefully tracking datasets, organizations can
bolster their defenses against malicious attacks and
recover more quickly from unintended vulnerabilities.

The stakes are high. AI systems are increasingly
involved in sectors ranging from healthcare to finance
and infrastructure. Over the last decade we’ve seen
in traditional software domains that you are only as
secure as your weakest link, and the weakest link
is often an overlooked piece of a supply chain. By
applying the solutions laid out in this paper, we believe
that we can collectively strengthen the links that tie
the AI software supply chain together.

Collective action is key. As with traditional software,
no AI model is an island. No matter how self-reliant
an organization is, there will always be dependencies,
datasets, and other shared components involved. By
increasing the information we capture and share about
these components, we can secure the fundamental
building blocks of the shared AI ecosystems and help
secure the AI software supply chains for everyone.

Conclusions

