Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Natural Language Processing with Java
  • Table Of Contents Toc
  • Feedback & Rating feedback
Natural Language Processing with Java

Natural Language Processing with Java - Second Edition

By : Richard M. Reese
2 (3)
close
close
Natural Language Processing with Java

Natural Language Processing with Java

2 (3)
By: Richard M. Reese

Overview of this book

Natural Language Processing (NLP) allows you to take any sentence and identify patterns, special names, company names, and more. The second edition of Natural Language Processing with Java teaches you how to perform language analysis with the help of Java libraries, while constantly gaining insights from the outcomes. You’ll start by understanding how NLP and its various concepts work. Having got to grips with the basics, you’ll explore important tools and libraries in Java for NLP, such as CoreNLP, OpenNLP, Neuroph, and Mallet. You’ll then start performing NLP on different inputs and tasks, such as tokenization, model training, parts-of-speech and parsing trees. You’ll learn about statistical machine translation, summarization, dialog systems, complex searches, supervised and unsupervised NLP, and more. By the end of this book, you’ll have learned more about NLP, neural networks, and various other trained models in Java for enhancing the performance of NLP applications.
Table of Contents (14 chapters)
close
close

Classifying Texts and Documents

In this chapter, we will demonstrate how to use various Natural Language Processing (NLP) APIs to perform text classification. This is not to be confused with text clustering. Clustering is concerned with the identification of text without the use of predefined categories. Classification, in contrast, uses predefined categories. In this chapter, we will focus on text classification, where tags are assigned to text to specify its type.

The general approach that is used to perform text classification starts with the training of a model. The model is validated and then used to classify documents. We will focus on the training and usage stages of this process.

Documents can be classified according to any number of attributes, such as their subject, document type, time of publication, author, language used, and reading level. Some classification approaches...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Natural Language Processing with Java
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon