机器学习 笔记

什么是机器学习

Machine Learning 约等于 Look for a function.

学习路线

在这里插入图片描述

监督学习:

  • 回归Regression:指模型预估的输出是数值
  • Classification:指模型预估的输出是类别,二分类的输出是或否
  • 会告诉机器正确的答案是什么

半监督学习:

  • 少量有label的data

迁移学习:

无监督学习:
在这里插入图片描述
结构化学习:

  • 希望机器输出有结构的东西
    在这里插入图片描述
  • 比如GAN(生成式对抗网络)

强化学习:

  • 与有监督学习不同,只会告诉机器做的好不好 learning from critics (评价)
  • 用不用强化学习是根据情景定的,没有label就没办法做监督学习
  • 在这里插入图片描述

回归Regression

是一种线性model,类似于y = wx + b这种
在这里插入图片描述
可以把model认为是无穷的function集合,对于某一个function来说,输入宝可梦当前的CP值,就能输出宝可梦未来升级之后的CP值
在这里插入图片描述

loss函数

loss函数可以认为是function的function,去衡量我们找的这个function好不好

在这里插入图片描述
如何去找到这个最好的fucnction呢?

就是梯度下降方法SGD,通过微分可以找到优化的方向,但这样可能没办法找到全局最优

  1. 随机选取一个w和b
  2. 在w这个位置,计算w对这个function的微分,如果是负,那么就是我们想要找的方向

真正关心的是testing data,模型没看过的数据,才能知道模型的效果到底怎么样,可以计算测试数据的平均error

可以发现当前在CP小和大的时候不准,可能要重新设计一个model
在这里插入图片描述
比如新的model范式为,也更准一点:

在这里插入图片描述

再换一次,发现training data更测试数据的error更差了,所以并不是越复杂的模型,error越小
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值