机器学习正以前所未有的速度改变着多个行业的业务。下面就是机器学习的典型应用
欺诈检测:银行和金融机构通常使用机器学习来确定与付款指示相关的整体风险。在这种情况下,付款包括转帐和使用卡购买(向提供商付款)。风险决策基于包括交易历史在内的多种因素。如果风险低,则允许进行交易。如果风险太高,则交易被拒绝。如果认为风险处于可接受的阈值之内,则可能会要求客户执行某种形式的逐步认证,以允许交易继续进行。
信用评分:每当客户申请诸如贷款或信用卡之类的信用产品时,机器学习系统都会计算分数,以表明客户无法偿还贷款的总体风险。
保险费的计算:机器学习系统通常用于计算当客户申请购买保险产品时所引用的保险费。
行为生物识别:可以训练机器学习系统,以根据用户使用网站或移动应用程序的方式来建立用户的配置文件。具体来说,此类系统基于对以下信息的分析来创建用户的个人资料:访问者从何处访问平台,一天中的什么时间,单击页面的时间,在页面上停留的时间,在鼠标上移动的速度页面等。系统经过培训后,就可以用于提供有关有人冒充客户的可能性的实时信息。
产品推荐:机器学习系统通常由在线零售商(例如Amazon)用于根据客户的购买历史向客户提供推荐列表。这些系统甚至可以预测客户何时可