该模型从根本上提高了视觉语言模型预训练的成本和效率。
我的一个好朋友总是提醒我,多模态是人工智能的未来,视觉语言模型似乎证实了这一说法。近几个月来,视觉语言模型呈爆炸式增长。最近,GPT-4 推出了包括语言和图像在内的多模态功能。尽管取得了进展,但训练视觉语言模型的成本正在迅速增加,严重限制了该领域的应用。最近,Salesforce Research推出了 BLIP-2,这是一种以经济高效的方式预训练视觉语言模型的新技术。
BLIP-2 的核心思想是通过从现有的预训练视觉和语言模型中引导,为视觉语言预训练 (VLP) 提供一种计算高效且通用的方法。这些预训练模型提供高质量的视觉表示和强大的语言生成能力,特别是在大型语言模型 (LLM) 的情况下,它也表现出零样本迁移能力。为了降低计算成本并解决灾难性遗忘问题,单峰预训练模型在预训练期间保持冻结状态。
BLIP-2 内部
为了使语言模型 (LLM) 能够理解视觉内容,有必要弥合视觉和语言模式之间的差距。然而,弥合这一差距具有挑战性,特别是当 LLM 保持冻结状态并且在自然语言预训练期间未接触任何图像时。Salesforce 研究人员提出了一种新