介绍
CPU(中央处理器)于 20 世纪 60 年代首次推出,是每台计算机的心脏,负责执行所有主要操作。CPU 功能多样,能够处理各种指令和操作,是运行操作系统、生产力软件和许多其他常规应用程序的理想选择。然而,随着第一批 3D 视频游戏和高级图形应用程序的出现,CPU 的局限性开始显现。它们的架构并未针对密集图形应用程序和科学模拟所需的大规模并行计算进行优化,因为它们是专门为通用计算而设计的。
然而,随着密集图形应用程序和科学模拟对大规模并行处理的需求不断增长,CPU 和数学协处理器的局限性变得明显。这导致了 20 世纪 90 年代GPU(图形处理单元)的发展,它很快变得至关重要,专门用于并行处理大量数据。GPU(集成显卡或独立显卡)由数百或数千个较小的专用核心(ALU:算术逻辑单元)构成,可以同时执行多个操作,使其成为图形渲染的理想选择,最近,也成为训练和部署深度学习模型的理想选择。
近年来,我们见证了一类新型处理单元的出现:NPU(神经处理单元)。虽然数学协处理器和 GPU 加