本地电脑大模型系列之 03 将 Autogen 与本地 LLM 结合使用,使用 OLLAMA 将开源 LLM 与 Autogen 集成

什么是 Autogen?

AutoGen 是由 Microsoft 开发的框架,它支持使用多个代理来开发 LLM 应用程序,这些代理可以相互对话以解决任务。代理可以采用多种模式运行,这些模式结合了 LLM、人工输入和工具。

Autogen 的主要优势之一是它能够自动创建代码并执行通常需要手动完成的任务,从而显著加快开发周期。这不仅加快了开发速度,还通过最大限度地降低人为错误的风险,提高了软件应用程序的可靠性和性能。

此外,Autogen 使用人工智能和机器学习算法,这意味着它可以从数据中学习,适应不断变化的条件,并根据预定义的目标做出决策。这使得它成为实时优化运营、个性化与用户的互动以及根据用户反馈和行为不断改进软件功能的宝贵工具。

系列文章

### 如何使用 AutoGen 框架在本地运行大模型 为了实现在本地环境中利用 AutoGen 框架来操作大型语言模型 (LLM),可以遵循特定配置流程。此过程涉及安装必要的依赖项以及设置环境变量以便于本地 LLM 进行交互。 #### 安装依赖库 首先,确保 Python 环境已准备好,并通过 pip 工具安装 autogen 库以及其他可能需要的支持包: ```bash pip install pyautogen ``` 对于更复杂的项目结构或者当目标是集成多个组件时,则还需要考虑其他依赖关系的管理[^1]。 #### 设置环境参数 接着,在启动应用程序之前定义一些重要的环境变量,这些变量用于指定要加载的语言模型路径及其他必要选项。例如,可以通过命令行界面设定如下所示的关键字: ```bash export AUTOGEN_LLM_PATH="/path/to/local/model" ``` 这一步骤确保了后续代码能够正确识别并访问到预训练好的模型实例。 #### 初始化 Agent 实例 创建一个基于 `ConversableAgent` 类的新对象作为代理程序的一部分,该类允许开发者自定义对话逻辑并外部服务建立连接。下面是一个简单的初始化例子: ```python from autogen import ConversableAgent config_list = [ { 'model': "ollama", 'api_base': "/local/path/to/ollama/api", # 替换为实际API地址 'api_type': "open_ai", 'api_key': "" # 如果适用的话提供密钥; 对于完全离线模式则留空 } ] agent = ConversableAgent( name="my_local_llm_agent", llm_config=config_list, human_input_mode="NEVER" # 或者根据需求调整输入方式 ) ``` 上述片段展示了如何配置支持 Ollama本地 LLM 接口,并将其关联至新创建的 agent 上下文中[^3]。 #### 开始会话 最后一步就是激活聊天循环机制,让人类用户或另一个自动化实体参到实时交流当中去。这里展示了一个基本的方法调用来触发整个互动过程: ```python agent.initiate_chat() ``` 这段代码将会开启一次新的对话回合,其中包含了由前述配置所决定的消息传递规则和处理策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值