简介
有些想法在纸面上看起来很诱人,但在实践中却令人沮丧。
如果您在几年前就构建过知识图谱,那么这项任务您会觉得非常艰巨——我就是这样的。
我第一次接触 Neo4J 时就被深深吸引。它开启了许多前所未有的可能性。我的一位朋友谈到了知识图谱,这对我们公司来说非常有用。
几周后,我们彻底放弃了这个想法。
知识图谱要求我们将组织文档表示为节点和边。谁会为了提取节点和边而阅读数千页文档和 PowerPoint 幻灯片呢?
确实,这不现实。没有人会把宝贵的资源投入到那样数月的研发工作中。
但以今天的标准来看,这并不是什么大任务。
我们可以利用人工智能来构建知识图谱,只需要人工干预来验证其准确性。
LLM 可以阅读难以想象的长篇文献,并创建结构化的输出。我们可以将 PDF、PPT、Word 文档等输入到 LLM 中,并轻松地将它们转换为知识图谱。
在这篇文章中,我将带你了解我所热爱的知识图谱 (KG) 构建过程。请注意,这可能还不能立即用于生产应用。但这确实是一个创建初稿的绝佳方法。
在此之前,我们先来简单介绍一下知识图谱(以防你偶然看到这篇文章,却不知道什么是知识图谱)。