简介
水文建模对于理解和管理水资源至关重要——无论是预测雪水流域的径流、优化水库调度,还是评估气候变化的影响。其中最经久不衰的框架之一是HBV模型(Hydrologiska Byråns Vattenbalansavdelning),这是一个半分布式概念性降雨径流模型,最初于20世纪70年代在瑞典开发。它的简单性、对最低限度气象输入(温度、降水、蒸散量)的依赖以及透明的过程描述,使其成为全球水文教育和实践的基石。
该项目旨在提供一个易于访问的开源 Python实现,该实现封装了关键的水文过程以及校准的不确定性和性能例程。该模型专为教学和实验而设计,不仅演示了 HBV 如何模拟径流,还展示了如何探索参数影响、结果的不确定性以及校准和验证过程。
请注意,该项目仅用于教育目的,由于采用合成数据集,结果可能不切实际。
为了运行 HBV 模型,我们使用必要的 Python 库进行数据处理、采样、绘图和性能评估。这些库支持模型计算、不确定性分析和结果可视化。
推荐文章
-
《Pytho机器学习之预测温室气体排放 (教程含源码)》 权重1,机器学习