梯度提升树的NDCG评估指标的合格标准取决于具体的应用场景和需求。一般来说,NDCG值越高,模型的性能越好,但是不同的数据集和任务可能会有不同的评估标准。在一些比较严格的竞赛或评测中,通常会要求模型的NDCG值在0.8以上才能被认为是合格的。但是在实际应用中,根据具体的需求和场景,可以根据经验或者实验结果来确定一个合适的NDCG阈值,作为模型性能的判断标准。
梯度提升树的NDCG评估指标的合格标准取决于具体的应用场景和需求。一般来说,NDCG值越高,模型的性能越好,但是不同的数据集和任务可能会有不同的评估标准。在一些比较严格的竞赛或评测中,通常会要求模型的NDCG值在0.8以上才能被认为是合格的。但是在实际应用中,根据具体的需求和场景,可以根据经验或者实验结果来确定一个合适的NDCG阈值,作为模型性能的判断标准。