绘图杂记【4】R语言corrplot绘制相关图

博客围绕R语言相关性图绘制展开,介绍了corrplot包与ggcorrplot相关图,阐述R语言可视化中相关性图绘制的内容,对corrplot的参数method进行解释,说明了其可指定圆形、方形等多种可视化方法,还提及其他绘图包及热图绘制实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

corrplot包与ggcorrplot相关图(一)
corrplot包与ggcorrplot相关图(二)
R语言可视化(十五):相关性图绘制


参数解释:

R语言corrplot

示例1

在这里插入图片描述

# install.packages("corrplot") 
library(corrplot)
library(ggplot2)
library(ggcorrplot)
data("mtcars")
corr <- round(cor(mtcars), 1)
head(corr[, 1:6])

corrplot(corr)
#或者
corrplot(corr, method = “circle”)

示例2

在这里插入图片描述

library(corrplot)
library(ggplot2)
library(ggcorrplot)
data("mtcars")
corr <- round(cor(mtcars), 1)
head(corr[, 1:6])

corrplot(
	corr,
	type="upper", #保留右上部分图形
	addCoef.col="black",#添加相关系数,颜色为黑色
	diag=F)#去掉自身相关

示例3

在这里插入图片描述

library(corrplot)
library(ggplot2)
library(ggcorrplot)
data("mtcars")
corr <- round(cor(mtcars), 1)
head(corr[, 1:6])


# 自定义渐变色板 colorRampPalette()
# 用法:
# 1.输入调色板的主要颜色,返回函数
# 2.在函数中输入想要获取的颜色数量,返回颜色数值
library(scales) #调用scales库中的show_col函数
mypalette<- colorRampPalette(c("#BB4444", "#EE9988", "#FFFFFF", "#77AADD", "#4477AA"))
mycolors<- mypalette(200)#200种颜色,返回颜色数值
show_col(mycolors)

corrplot(
	corr,
	method="color",#调整为正方形
	col=mycolors, #200种颜色,返回颜色数值
	type="lower", #保留右上部分
	order="hclust", #层次聚类
	addCoef.col = "black", #添加相关系数
	tl.col="black", # 指定文本标签的颜色
	tl.srt=0, #修改字体
	diag=FALSE )#去除自身相关

示例4

method:指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形

method = c(“circle”, “square”, “ellipse”, “number”, “shade”, “color”, “pie”)
在这里插入图片描述

library(corrplot)
library(ggplot2)
library(ggcorrplot)
data("mtcars")
corr <- round(cor(mtcars), 1)
head(corr[, 1:6])


# 自定义渐变色板 colorRampPalette()
# 用法:
# 1.输入调色板的主要颜色,返回函数
# 2.在函数中输入想要获取的颜色数量,返回颜色数值
library(scales) #调用scales库中的show_col函数
mypalette<- colorRampPalette(c("#BB4444", "#EE9988", "#FFFFFF", "#77AADD", "#4477AA"))
mycolors<- mypalette(200)#200种颜色,返回颜色数值
show_col(mycolors)

corrplot(
	corr,
	method="square",#调整为正方形
	col=mycolors, #200种颜色,返回颜色数值
	type="lower", #保留右上部分
	order="hclust", #层次聚类
	addCoef.col = "black", #添加相关系数
	tl.col="black", # 指定文本标签的颜色
	tl.srt=0, #修改字体
	diag=FALSE )#去除自身相关

示例5

method:指定可视化的方法——饼图

method = c(“circle”, “square”, “ellipse”, “number”, “shade”, “color”, “pie”)

在这里插入图片描述

library(ggplot2)
library(corrplot)
library(tidyverse)
library(ggridges)

#数据准备
#使用lincoln_weather数据集(2016年在内布拉斯加州林肯的天气)
df = lincoln_weather[2:19]

x = na.omit(df[sample(length(df),7)])
colnames(x)=c('A1','A2','A3','A4','A5','A6','A7')
x 

corrplot(
	# 相关系数矩阵
	corr = cor(x), 
	order = 'AOE',
	type = 'lower', 
	tl.pos = 'd')


corrplot(
	corr = cor(x), 
	add = TRUE, 
	type = 'upper',  # 指定展示的方式,可以是完全的、下三角或上三角
	method = 'number',# 指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形
	order = 'AOE', # 指定相关系数排序的方法,可以是原始顺序(original)、特征向量角序(AOE)、第一主成分顺序(FPC)、层次聚类顺序(hclust)和字母顺序,一般”AOE”排序结果都比”FPC”要好
	diag = FALSE,  #是否展示对角线上的结果,默认为TRUE
	tl.pos = 'n', # 指定文本标签(变量名称)的位置,当type=full时,默认标签位置在左边和顶部(lt),当type=lower时,默认标签在左边和对角线(ld),当type=upper时,默认标签在顶部和对角线,d表示对角线,n表示不添加文本标签
	cl.pos = 'n')# 图例(颜色)位置,当type=upper或full时,图例在右表(r),当type=lower时,图例在底部,不需要图例时,只需指定该参数为n

示例6

在这里插入图片描述

library(corrplot)
library(ggcorrplot)
library(ggplot2)
data("mtcars")
corr <- round(cor(mtcars), 1)
head(corr[, 1:6])

corrplot(
	# 相关系数矩阵
	corr = corr, 
	order = 'AOE',
	type = 'lower', 
	tl.pos = 'd')


corrplot(
	corr = corr, 
	add = TRUE, 
	type = 'upper',  # 指定展示的方式,可以是完全的、下三角或上三角
	method = 'number',# 指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形
	order = 'AOE', # 指定相关系数排序的方法,可以是原始顺序(original)、特征向量角序(AOE)、第一主成分顺序(FPC)、层次聚类顺序(hclust)和字母顺序,一般”AOE”排序结果都比”FPC”要好
	diag = FALSE,  #是否展示对角线上的结果,默认为TRUE
	tl.pos = 'n', # 指定文本标签(变量名称)的位置,当type=full时,默认标签位置在左边和顶部(lt),当type=lower时,默认标签在左边和对角线(ld),当type=upper时,默认标签在顶部和对角线,d表示对角线,n表示不添加文本标签
	cl.pos = 'n')# 图例(颜色)位置,当type=upper或full时,图例在右表(r),当type=lower时,图例在底部,不需要图例时,只需指定该参数为n

或者

corrplot(corr, method = 'pie',type='upper')
corrplot.mixed(corr)

示例7

在这里插入图片描述

corr <- round(cor(mtcars), 1)
head(corr[, 1:6])

corrplot(
	# 相关系数矩阵
	corr = corr, 
	order = 'AOE',method = 'pie',
	type = 'lower', 
	tl.pos = 'd')


corrplot(
	corr = corr, 
	add = TRUE, 
	type = 'upper',  # 指定展示的方式,可以是完全的、下三角或上三角
	method = 'number',# 指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形
	order = 'AOE', # 指定相关系数排序的方法,可以是原始顺序(original)、特征向量角序(AOE)、第一主成分顺序(FPC)、层次聚类顺序(hclust)和字母顺序,一般”AOE”排序结果都比”FPC”要好
	diag = FALSE,  #是否展示对角线上的结果,默认为TRUE
	tl.pos = 'n', # 指定文本标签(变量名称)的位置,当type=full时,默认标签位置在左边和顶部(lt),当type=lower时,默认标签在左边和对角线(ld),当type=upper时,默认标签在顶部和对角线,d表示对角线,n表示不添加文本标签
	cl.pos = 'n')# 图例(颜色)位置,当type=upper或full时,图例在右表(r),当type=lower时,图例在底部,不需要图例时,只需指定该参数为n

示例8

method = c(“circle”, “square”, “ellipse”, “number”, “shade”, “color”, “pie”)
在这里插入图片描述

corr <- round(cor(mtcars), 1)
head(corr[, 1:6])

corrplot(
	# 相关系数矩阵
	corr = corr, 
	order = 'AOE',method = 'pie',
	type = 'lower', 
	tl.pos = 'd')


corrplot(
	corr = corr, 
	add = TRUE, 
	type = 'upper',  # 指定展示的方式,可以是完全的、下三角或上三角
	method = 'shade',# 指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形
	order = 'AOE', # 指定相关系数排序的方法,可以是原始顺序(original)、特征向量角序(AOE)、第一主成分顺序(FPC)、层次聚类顺序(hclust)和字母顺序,一般”AOE”排序结果都比”FPC”要好
	diag = FALSE,  #是否展示对角线上的结果,默认为TRUE
	tl.pos = 'n', # 指定文本标签(变量名称)的位置,当type=full时,默认标签位置在左边和顶部(lt),当type=lower时,默认标签在左边和对角线(ld),当type=upper时,默认标签在顶部和对角线,d表示对角线,n表示不添加文本标签
	cl.pos = 'n')# 图例(颜色)位置,当type=upper或full时,图例在右表(r),当type=lower时,图例在底部,不需要图例时,只需指定该参数为n

示例9

在这里插入图片描述

corr <- round(cor(mtcars), 1)
head(corr[, 1:6])

corrplot(
	# 相关系数矩阵
	corr = corr, 
	order = 'AOE',method = 'number',
	type = 'lower', 
	tl.pos = 'd')


corrplot(
	corr = corr, 
	add = TRUE, 
	type = 'upper',  # 指定展示的方式,可以是完全的、下三角或上三角
	method = 'ellipse',# 指定可视化的方法,可以是圆形、方形、椭圆形、数值、阴影、颜色或饼图形
	order = 'AOE', # 指定相关系数排序的方法,可以是原始顺序(original)、特征向量角序(AOE)、第一主成分顺序(FPC)、层次聚类顺序(hclust)和字母顺序,一般”AOE”排序结果都比”FPC”要好
	diag = FALSE,  #是否展示对角线上的结果,默认为TRUE
	tl.pos = 'n', # 指定文本标签(变量名称)的位置,当type=full时,默认标签位置在左边和顶部(lt),当type=lower时,默认标签在左边和对角线(ld),当type=upper时,默认标签在顶部和对角线,d表示对角线,n表示不添加文本标签
	cl.pos = 'n')# 图例(颜色)位置,当type=upper或full时,图例在右表(r),当type=lower时,图例在底部,不需要图例时,只需指定该参数为n

或者
在这里插入图片描述

corrplot(corr, method = 'ellipse')

示例10

在这里插入图片描述

corr <- round(cor(mtcars), 1)
head(corr[, 1:6])

corrplot(
	corr=cor(mtcars[1:7]),
	order = "AOE",
	type="upper",
	tl.pos = "d")

corrplot(
	corr = cor(mtcars[1:7]),
	add=TRUE, 
	type="lower", 
	method="number",
	order="AOE",
	diag=FALSE,
	tl.pos="n", 
	cl.pos="n")

示例11

在这里插入图片描述

library(corrplot)
library(ggcorrplot)
library(ggplot2)
data("mtcars")

corrplot(
	corr =cor(mtcars[1:7]),
	order="AOE",
	type="upper",
	tl.pos="tp")

corrplot(
	corr = cor(mtcars[1:7]),
	add=TRUE, 
	type="lower", 
	method="number",
	order="AOE", 
	col="black",
	diag=FALSE,
	tl.pos="n", 
	cl.pos="n")

示例12

corrplot包绘制相关性图

R语言-相关矩阵可视化包ggcorrplot

R语言绘图:28个实用程序包

R语言绘制热图实践(一)pheatmap包

R——相关关系热图

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值