反欺诈建模方案

本文介绍了如何利用知识图谱进行反欺诈建模。通过识别数据造假、组团欺诈和代办包装,以及设计反欺诈模型,来检测和防御欺诈风险。知识图谱在整合多源数据后,能发现数据不一致性和潜在的欺诈行为,如通过借款人信息的交叉验证和关联关系分析,识别出逾期、虚假信息和组团骗贷等风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在反欺诈场景中,知识图谱聚合各类数据源,逐步绘制出借款人的profile,从而针对性的识别欺诈风险。以一个借款人举例,借款人可以有身份证号,手机号,学历等个人信息,属于个人的属性信息;而借款人可以有担保人或是亲属好友,借款人与担保人之间的关系(也就是边Edge)是被担保与担保的关系,借款人与其亲属好友之间的关系是父亲、母亲、同事、同学等关系;借款人也具有住址,银行流水,工作单位等信息。这些信息可以来自于多个渠道,例如可以由借款人自己填写,或是积累的历史数据,或是数据提供商提供,或是在互联网上获得,甚至通过推理得到,往往具有冗余性;信息通过图的形式连结,展示出借款人的profile。

1识别数据造假

当融合来自不同数据源的信息构成知识图谱时,有一些实体会同时属于两个互斥的类别(例如同时在两个不同的城市工作),或某个实体所对应的一个Property(同一个人的住址)对应多个值,这样就会出现不一致性,这个不一致性即可判定为潜在的可疑点。
通过这种不一致性检测,我们利用绘制出的知识图谱可以识别潜在的欺诈风险。在P2P行业,欺诈风险主要的骗术包括个人信息造假、工作单位虚假、代办包装、虚假联系人、组团骗贷等。以识别数据造假为例,利用知

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

声纳咸鱼の声学实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值