本项目中我们被要求显示如何在matlab中应用偏最小二乘回归(PLSR)和主成分回归(PCR),并讨论这两种方法的有效性。当存在大量预测变量时,PLSR和PCR都是对因变量建模的方法,并且这些预测变量高度相关或甚至共线性。两种方法都将新的预测变量(称为成分)构建为原始预测变量的线性组合,但它们以不同的方式构造这些成分。PCR创建成分来解释预测变量中观察到的变异性,而根本不考虑因变量。另一方面,PLSR确实将因变量考虑在内,因此通常会导致模型能够使用更少的成分来适应因变量。
主成分分析PCA降维方法和R语言分析葡萄酒可视化实例
主成分分析PCA降维方法和R语言分析葡萄酒可视化实例
,时长04:30
加载数据
加载包括401个波长的60个汽油样品的光谱强度及其辛烷值的数据集。
使用两个拟合数据
使PLSR模型拟合10个PLS成分和一个因变量。
为了充分拟合数据,可能需要十个成分,但可以使用此拟合的诊断来选择具有更少成分的更简单模型。例如