偏最小二乘回归(PLSR)和主成分回归(PCR)

本文介绍了在MATLAB中应用偏最小二乘回归(PLSR)和主成分回归(PCR)的方法,探讨了两种回归方式在高相关预测变量情况下的效果。通过案例分析,对比了PLSR和PCR在不同组件数量下的模型拟合和预测能力,强调了PLSR在考虑因变量的情况下通常能以更少的组件达到更好的预测效果。同时,文章还提到了交叉验证在选择组件数量以避免过拟合中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本项目中我们被要求显示如何在matlab中应用偏最小二乘回归(PLSR)和主成分回归(PCR),并讨论这两种方法的有效性。当存在大量预测变量时,PLSR和PCR都是对因变量建模的方法,并且这些预测变量高度相关或甚至共线性。两种方法都将新的预测变量(称为成分)构建为原始预测变量的线性组合,但它们以不同的方式构造这些成分。PCR创建成分来解释预测变量中观察到的变异性,而根本不考虑因变量。另一方面,PLSR确实将因变量考虑在内,因此通常会导致模型能够使用更少的成分来适应因变量。

 主成分分析PCA降维方法和R语言分析葡萄酒可视化实例

主成分分析PCA降维方法和R语言分析葡萄酒可视化实例

,时长04:30

加载数据

加载包括401个波长的60个汽油样品的光谱强度及其辛烷值的数据集。

3f9b0ed4d4bf367d95361538fab22a77.png

使用两个拟合数据

使PLSR模型拟合10个PLS成分和一个因变量。

为了充分拟合数据,可能需要十个成分,但可以使用此拟合的诊断来选择具有更少成分的更简单模型。例如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值