PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化...

本文介绍了离散随机波动率(DSV)模型,包括GARCH和ARCH作为特殊情况,并展示了如何进行模拟和参数估计。通过Python代码实现GARCH(1,1)过程的样本路径模拟,探讨了最大似然估计方法,同时通过蒙特卡罗实验验证了参数估计的准确性。此外,还讨论了使用柯西分布噪声的影响,揭示了其可能导致的溢出异常问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:http://tecdat.cn/?p=25165 

这篇文章介绍了一类离散随机波动率模型,并介绍了一些特殊情况,包括 GARCH 和 ARCH 模型。本文展示了如何模拟这些过程以及参数估计。这些实验编写的 Python 代码在文章末尾引用。

离散随机波动率模型

0a30f84a3355ebcb97d8d6d6d24bab98.png是一个随机基,有一个完整的37e44f57d61bebdd1db5d921d72d3302.png 47baedf2d2d2dce1eb6bdad2ab907c33.png 的可测量子集 579fe30f7995082c382a6dfd6b33c635.png , 一个概率测量e2d2293751e98f2456ba60dc72fe39ce.png和一个过滤39afc8e4259766c8ccb6bdde902be50f.png

  • 因此,时间实例使用非负整数进行索引 a2167e1a7fdc202c24bce56a32662edf.png

  • 获取序列的第一个 t元素 95dbacf29703b3b610757f01295b8190.png, 记eb75267a122932e8395d8ca31de0eb92.png

_离散随机波动率_(   DSV) 模型中, 99621561b9ac4065d3b947fd35b6f4dd.png 是一个实值 stochastic process (一系列随机变量)满足以下方程:

d26c11bca151b2e811ec5b975c350b75.png

其中:

  • Z 是 F 的噪声过程。

  • φi 是实数,我假设 97f54900fd1072272555b1d149280d19.png 并且 gi ,hi 是非负值。

  • fi 、gi 和 h_ihi 是过程的确定性函数。

  • 过程 a6f27a2f3893a840c540c5c950a1e949.png 通常称为 _偏移_,而 σ 称为  X的_波动率。_因为σ 是一个随机过程,所以上面定义的过程 X 属于一个随机波动率模型的大家族。

  • 对于噪声过程 Z,使得每个 Z_t的均值和方差都存在,我们有 efead4862a5cabed03d8f895ca9e2935.png 和 d2a67d8a178c6843f9ad18448a8c5cf3.png.

案例

制定通用 DSV 模型的特化:

后移算子 01d27c1db4df8461802d4d1c0302cf4f.png,对于 d5694e81b4b3c9b5c5cb68a178456759.png,产生其参数过程的滞后版本,即 2b03f31a50ef21b397eafc39516b015c.png, 和 41fbea76c28a07f3c1e89d3dd0ddf6f6.png, 如果 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值