原文链接:http://tecdat.cn/?p=25165
这篇文章介绍了一类离散随机波动率模型,并介绍了一些特殊情况,包括 GARCH 和 ARCH 模型。本文展示了如何模拟这些过程以及参数估计。这些实验编写的 Python 代码在文章末尾引用。
离散随机波动率模型
是一个随机基,有一个完整的
的可测量子集
, 一个概率测量
和一个过滤
因此,时间实例使用非负整数进行索引
获取序列的第一个 t元素
, 记
_离散随机波动率_( DSV) 模型中, 是一个实值 stochastic process (一系列随机变量)满足以下方程:
其中:
Z 是 F 的噪声过程。
φi 是实数,我假设
并且 gi ,hi 是非负值。
fi 、gi 和 h_ihi 是过程的确定性函数。
过程
通常称为 _偏移_,而 σ 称为 X的_波动率。_因为σ 是一个随机过程,所以上面定义的过程 X 属于一个随机波动率模型的大家族。
对于噪声过程 Z,使得每个 Z_t的均值和方差都存在,我们有
和
.
案例
制定通用 DSV 模型的特化:
后移算子 ,对于
,产生其参数过程的滞后版本,即
, 和
, 如果