JupyterLab 调试器实战指南:从基础到高级的代码诊断技术
文章目录
文章简介
本文将全面解析 JupyterLab 内置调试器的核心功能,涵盖环境配置、断点调试、变量监控等关键技术,并通过实际案例演示如何利用调试器提升代码质量与开发效率。
一、调试环境搭建
1. 支持调试的内核选择
-
Python 生态:
# 推荐环境配置 conda create -n debug_env python=3.9 conda activate debug_env pip install ipykernel>=6 jupyterlab>=3 python -m ipykernel install --user --name=debug_env
-
多语言支持:
# 安装Common Lisp调试内核 conda install -c conda-forge common-lisp-jupyter
2. 调试协议扩展
通过实现Jupyter Debug Protocol
,开发者可自定义调试支持:
# 内核元数据示例
{
"debugger": {
"version": "1.0.0",
"supported_features": ["breakpoints", "step_into"]
}
}
二、调试器核心功能详解
1. 调试流程控制
# 示例代码:斐波那契数列计算
def fibonacci(n):
if n <= 1:
return n