Deepseek API+Python测试用例一键生成与导出

前言

测试开发工程师在日常工作中需要处理大量测试文档,并且这些文档需要被高效分类、清洗和管理,同时结合强大的 AI 推理能力(如 DeepSeek 模型)进行智能化处理和分析。为此,我们开发了一款基于 PyQt5 的 GUI 工具,集 文件分类内容清洗内容展示DeepSeek推理结果导出 于一体。本地的deepseek-r1由于硬件受限,推理能力难以达到预期。使用三方提供的免费API接口,生成的结果较为满意。由于各位宝子所在公司模板要求不一,这里会将用例导出为json格式输出。

由于阿里云百炼的deepseek-r1接口不支持返回json格式,代码里进行了简单的适配。所有在输入提示词的时候,最好是加入以json格式输出。这样代码可以拿来即用。

本文将详细介绍这款工具的功能实现,并提供完整的源码,让测试工程师轻松实现测试文档的智能化管理与分析。
在这里插入图片描述


功能特点

  1. 智能文档分类

    • 支持常见文本格式:docxxlsxmdtxtpdf
    • 使用 阿里云百炼的deepseek-r1 模型API推理,更加智能。
    • 使用 NLTK 进行智能清洗,仅保留有效内容。
    • 支持用户手动修正分类。
    self.template_phrases = [
             "请参考以下格式", "本段用于描述", "请参照", "示意图",
             "文档信息", "版本记录", "目  录", "运行维护", "终端设备",
             "网络需求", "其他", "【注:以下内容,请做  标注】", "不涉及",
             "【注:需求规格说明书经业务、开发确认后可形成定版需求,版本号统一为V1.0】",
             "其他", "【注:以下内容,请做  标注】"
### 如何使用 DeepSeekPython 自动生成测试用例 #### 利用语义搜索和知识推荐能力生成基础测试用例 通过集成 DeepSeek 的强大语义搜索能力和知识推荐引擎,可以从需求文档中提取关键信息来创建初步的测试框架。这一步骤能够显著减少手动编写基本测试逻辑的时间成本。 ```python import deepseek as ds def generate_base_test_cases(requirement_doc_path): """基于需求文档生成基础测试用例""" client = ds.Client(api_key='your_api_key') requirements = client.extract_requirements_from_document(requirement_doc_path) test_cases = [] for req in requirements: case_template = f"# 测试 {req['feature']}\n" case_template += f"def test_{ds.utils.slugify(req['description'])}():\n" case_template += " pass\n\n" test_cases.append(case_template) return ''.join(test_cases) ``` [^1] #### 复用已有用例并补充新的测试案例 为了提高效率,在现有项目基础上复用已有的测试用例是非常重要的策略之一。借助于 DeepSeek 对相似度匹配的支持,可以在历史版本或其他模块中的测试集中找到可重复利用的部分,并针对当前项目的特定情况进行调整和完善。 ```python from difflib import SequenceMatcher def find_similar_tests(new_req, existing_tests): """查找新需求最接近的历史测试用例""" best_match = None highest_ratio = 0 for et in existing_tests: ratio = SequenceMatcher(None, new_req.lower(), et.description.lower()).ratio() if ratio > highest_ratio and ratio >= 0.7: # 设置阈值以过滤不相关项 highest_ratio = ratio best_match = et return best_match existing_tests = [...] # 假设这里是从数据库加载的一系列旧版测试实例对象列表 new_requirement_text = "用户登录成功后应跳转至首页." similar_case = find_similar_tests(new_requirement_text, existing_tests) if similar_case is not None: print(f"发现类似测试:\n{similar_case.code}") else: print("未找到合适的模板.") ``` #### 分析边界条件和异常场景,增强测试覆盖范围 除了正常流程外,还需要特别关注程序可能遇到的各种极端情况以及错误输入的可能性。DeepSeek 可帮助识别潜在的风险点,并指导开发者设计更加严谨细致的验证方案。 ```python def analyze_edge_cases_and_exceptions(feature_description): """根据特性描述分析其边界条件及异常处理要求.""" edge_conditions = [ ("空字符串", ""), ("极大整数", int(9e18)), ("-1作为负索引", -1), ... ] exceptions_to_handle = ["TypeError", "ValueError"] analysis_result = { 'edge': [], 'exception': [] } for cond_name, value in edge_conditions: try: eval(f"{feature_description}(value)") # 这里仅作示意用途;实际应用时需谨慎评估安全性风险. continue except Exception as e: if type(e).__name__ in exceptions_to_handle: analysis_result['exception'].append((cond_name, str(type(e)))) return analysis_result ``` #### 构建用例数据库以便后续维护和支持团队协作 最后,将所有生成或优化后的测试用例存储在一个易于访问的位置对于长期维护至关重要。考虑到不同成员之间可能存在交流障碍,建立统一标准格式化的仓库不仅有助于内部沟通协调,也方便外部审计人员审查工作成果。 ```sql CREATE TABLE IF NOT EXISTS TestCases ( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT UNIQUE NOT NULL, content BLOB NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, updated_at TIMESTAMP ON UPDATE CURRENT_TIMESTAMP ); ``` ```python class TestCaseRepository(): def __init__(self, db_connection_string="sqlite:///testcases.db"): self.conn = sqlite3.connect(db_connection_string) cursor = self.conn.cursor() create_table_query = """ CREATE TABLE IF NOT EXISTS TestCases( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT UNIQUE NOT NULL, content BLOB NOT NULL, created_at DATETIME DEFAULT (datetime('now', 'localtime')), updated_at DATETIME ON CONFLICT REPLACE ); """ cursor.execute(create_table_query) self.conn.commit() def add(self, title, code_content): insert_stmt = '''INSERT INTO TestCases(title,content) VALUES (?,?)''' with closing(sqlite3.connect(":memory:")) as conn: cur = conn.cursor() cur.execute(insert_stmt,(title,pickle.dumps(code_content))) conn.commit() def get_all_titles(self): select_stmt = '''SELECT DISTINCT title FROM TestCases ORDER BY created_at DESC;''' results = pd.read_sql(select_stmt,self.conn)['title'] return list(results.values) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值