随着人工智能技术的发展,大模型(如DeepSeek-R1)在自动化测试中的应用逐渐成为热点。然而,在测试用例生成中,由于需求文档中可能存在模糊或不完整的信息,单纯依赖大模型生成的测试用例有时难以满足实际需求。本文将深入探讨如何通过开源知识图谱框架 Graphiti 提取需求中的语义信息,结合 DeepSeek-R1 对模糊信息进行处理,从而实现高精准测试用例生成的完整流程。
为什么测试用例生成需要知识图谱?
在测试用例生成的过程中,测试工程师通常需要从需求文档中提取关键信息。然而,需求文档往往以自然语言形式撰写,面临以下挑战:
- 语言模糊性:需求文档中可能存在多义词或不清晰的描述。例如,“用户可以搜索商品”并未明确搜索方式(按名称还是编号)。
- 上下文缺失:需求文档可能省略了部分背景信息,导致测试用例难以覆盖所有场景。
- 复杂依赖关系:大型系统的需求文档通常涉及多个模块间的复杂依赖,难以全面提取。
知识图谱通过将需求文档中的实体和关系转换为结构化数据,能够有效减少上述问题,为大模型提供清晰的语义支持和上下文。
什么是Graphiti?
Graphiti 是一个轻量级的开源知识图谱框架,专注于从自然语言文本中提取实体和关系,并构建结构化语义图谱。它的核心特点包括:
- 语义解析:基于自然语言处理(NLP)技术,能够识别文本中的实体和它们之间的语义关系。
- 领域适配:支持自定义领域词汇和规则,适用于不同的业务场景。
- 可视化支持:生成直观的知识图谱图形,帮助测试工程师快速理解需求结构。
通过Graphiti,测试工程师可以快速从需求文档中提取信息,并以知识图谱的形式表示,为后续的测试用例生成提供明确的语义基础。
深入理解DeepSeek-R1如何处理模糊信息
DeepSeek-R1 是一款专注于测试用例生成的大模型,通过深度学习技术分析需求文档并生成对