- 博客(522)
- 收藏
- 关注

原创 【人工智能】人工智能的数学基础
人工智能(AI)的学习路线通常分为几个阶段,涉及数学基础、编程技能、机器学习、深度学习以及相关工具的掌握。本文是对数学基础部分的整理和总结,目前不断学习整理更新中.....
2024-11-12 10:43:43
370

原创 【机器学习】机器学习中用到的高等数学知识
机器学习是一个跨学科领域,涉及多种高等数学知识。掌握这些高等数学知识可以帮助理解机器学习算法的工作原理和实现过程。在实际应用中,建议结合编程实践,如使用 Python 中的 NumPy 和 SciPy 库进行线性代数和数值计算,使用 scikit-learn 进行统计分析和机器学习建模。通过理论与实践相结合,能够更深入地理解机器学习的核心概念和应用。
2024-11-07 09:38:28
810

原创 人工智能学习路线
人工智能学习的过程是循序渐进的,先打好数学和编程基础,然后逐步深入机器学习和深度学习,最后通过实际项目和工具框架的使用巩固知识。
2024-10-30 14:08:07
854
1
原创 从 0 打造爆款 AI 智能体:用 Coze 快速上手全攻略
摘要:Coze是由字节跳动推出的可视化AI智能体开发平台,无需编程即可通过拖拽组件创建具备对话、推荐、记忆等功能的AI助手。该平台支持多轮对话设计、知识库接入、插件调用和记忆能力,提供GPT-4等多种模型选择。文章详细介绍了构建智能体的三个步骤:场景定位、功能配置和亮点设计,并以"图文知识推荐助手"为例展示实操方法。Coze特别适合中文用户,可用于客服、教育、内容创作等场景,让非技术人员也能打造个性化的AI助手。其简易性和中文友好特性使其成为国内用户创建智能体的优选工具。
2025-05-30 19:56:15
467
原创 别再盲选了!n8n、Dify 和 Coze 哪个平台更适合你?
本文对比了n8n、Dify和Coze三款自动化与AI开发平台的特性差异。n8n作为开源流程自动化工具,擅长复杂系统集成,适合开发者构建定制化工作流;Dify是专注大模型应用的低代码平台,提供企业级AI解决方案;Coze则采用零代码设计,能快速创建聊天机器人,适合轻量级应用。三者各有侧重:n8n功能最强大但门槛较高,Dify平衡功能与易用性,Coze最易上手但功能有限。选择需根据团队技术能力、业务复杂度等需求权衡,n8n适合深度定制,Dify适用企业AI场景,Coze则满足快速原型开发需求。
2025-05-30 19:37:54
803
原创 大语言模型在软件工程中的应用、影响与展望
大语言模型(LLMs)代表了人工智能领域的一项重大突破,它们是经过海量文本数据训练的先进人工智能系统,旨在理解、解释并生成类人文本。这些模型的核心能力源于其在庞大数据集上进行的广泛训练,使其能够捕捉语言的细微之处和复杂模式,从而实现对下一个词的概率预测,进而生成连贯且上下文相关的输出。LLMs的强大之处不仅在于其文本生成能力,更在于其展现出的多任务适应性和复杂的推理能力。与传统AI模型通常只能执行单一任务不同,一个大模型能够涵盖广泛的能力范畴,对下游任务表现出极高的适应性和灵活性。
2025-05-25 09:18:54
1131
原创 【读书笔记】《思考,快与慢》总结
《思考,快与慢》揭示了人类思维的两种模式:系统1(快速直觉)和系统2(缓慢理性)。诺贝尔奖得主卡尼曼通过大量实验证明,我们日常决策常受系统1的认知偏差影响,如锚定效应、损失厌恶等,导致非理性判断。书中提出的前景理论颠覆了传统经济学假设,指出人们对损失的敏感度高于收益。这本书不仅解释了思维误区,更为行为经济学奠定了基础,对个人决策和公共政策具有深远影响。理解这些思维陷阱,能帮助我们做出更明智的选择。
2025-05-25 09:09:46
265
原创 【漫话机器学习系列】277.梯度裁剪(Gradient Clipping)
摘要:梯度裁剪(Gradient Clipping)是深度学习中防止梯度爆炸的技术,通过限制梯度范数(如超过阈值v则缩放)来稳定训练,尤其适用于RNN、LSTM等深层模型。其核心原理不改变梯度方向,仅控制大小,避免参数更新过大导致模型发散。PyTorch/TensorFlow可通过简单API实现(如clip_grad_norm_)。需注意梯度裁剪是训练保障而非精度优化手段,建议阈值设为0.1~5,常用于高学习率或复杂结构场景。
2025-05-25 08:53:36
1087
原创 【漫话机器学习系列】276.梯度悬崖(Gradient Cliff)
《深度学习中的梯度悬崖问题解析》摘要 本文深入剖析了深度学习优化过程中的梯度悬崖现象。梯度悬崖指损失函数曲线出现急剧下降区域,导致梯度骤增,使优化算法可能越过最优解,引发训练不稳定甚至失败。文章图文并茂地展示了梯度悬崖的形成机制,分析了其成因包括不当的初始参数设置、过高学习率、复杂损失函数形状等。针对性地提出了五项解决方案:合理设置学习率及衰减策略、使用梯度裁剪技术、优化损失函数设计、选用平滑激活函数,以及采用优化初始化策略。通过系统性地理解并应对梯度悬崖问题,可有效提升模型训练的稳定性和收敛效果。
2025-05-24 09:31:18
805
原创 【漫话机器学习系列】275.GrabCut 算法——用于去除图片背景(Grabcut For Removing Image Backgrounds)
GrabCut 是由微软剑桥实验室于 2004 年提出的一种交互式图像前景分割算法。相比传统的图像分割方法,它的亮点是:支持用户轻松交互,只需简单画个矩形;基于高斯混合模型(GMM)与图割(Graph Cut)优化;分割效果细腻,适用于复杂背景下的图像处理。GrabCut 是一项结合图割与 GMM 的强大图像分割算法;通过手动圈定目标区域,就能自动判断前景与背景;适合中等难度的抠图任务,是 OpenCV 实战中的常用技能之一。
2025-05-24 09:26:43
809
原创 【漫话机器学习系列】274.基尼指数(Gini Index)
基尼指数(Gini Index)是决策树模型中用于衡量数据集纯度的关键指标,尤其在CART算法中广泛应用。它通过计算节点中各类别样本比例的平方和来评估数据的“纯度”,值越小表示类别越集中,纯度越高。基尼指数的计算简单高效,适用于分类问题,特别是二分类任务。与信息增益和增益率相比,基尼指数对多分类特征的偏倚较小,且计算速度更快。在实际应用中,选择使基尼指数最小的特征进行节点划分,有助于构建更“纯”的子集,提升决策树的分类效果。
2025-05-23 19:20:00
917
原创 【漫话机器学习系列】273.高斯朴素贝叶斯分类器(Gaussian Naive Bayes Classifier)
高斯朴素贝叶斯分类器是一种基于贝叶斯定理的监督学习算法,特别适用于处理连续型特征的数据。其核心思想是通过先验概率和条件独立假设,计算后验概率,并选择最大概率的类别作为预测结果。该分类器假设每个特征在给定类别下服从高斯分布(正态分布),因此得名“高斯”。其优点包括训练速度快、对小数据集有效、对高维数据表现良好,但缺点是对特征独立假设过于强烈,且对异常值敏感。高斯朴素贝叶斯广泛应用于垃圾邮件识别、情感分析、医疗诊断等领域。
2025-05-23 19:13:50
1081
原创 【漫话机器学习系列】272.K近邻中K的大小(K-NN Neighborhood Size)
K近邻算法(KNN)是一种基于距离度量的分类与回归方法,其核心在于选择合适的K值,即测试样本的最近邻居数量。K值的选择直接影响模型的偏差和方差:小K值(如1、3)使模型更灵活,低偏差但高方差,容易过拟合;大K值(如15、30)使模型更平滑,高偏差但低方差,容易欠拟合。因此,K值的选择需要在偏差和方差之间取得平衡,以提升模型的泛化能力。实际应用中,建议使用交叉验证选择K值,通常范围在3~30之间,优先选择奇数,并考虑样本大小和维度问题。KNN在图像识别、文本分类、推荐系统等场景中表现良好。
2025-05-22 21:13:01
760
原创 【漫话机器学习系列】271.KNN 算法的小技巧(K-Nearest Neighbors Tips And Tricks)
KNN(K近邻)算法是一种直观且易于实现的监督学习算法,广泛应用于分类和回归任务。尽管其原理简单,但在实际应用中,掌握一些技巧可以显著提升其性能。首先,所有特征应被放缩到相同量级,以避免因量纲不一致导致的模型偏倚,建议使用标准化或归一化处理。其次,K值应选择奇数,以防止在多数投票中出现平票情况。此外,可以采用加权投票,使距离更近的样本拥有更大的投票权重,提升分类准确率。最后,尝试多种距离度量方法(如欧几里得、曼哈顿、余弦相似度等),以适应不同数据类型和问题需求。
2025-05-22 20:47:44
732
原创 【漫话机器学习系列】270.KNN算法(K-Nearest Neighbors)
KNN(k近邻)算法是一种基于距离度量的监督学习算法,广泛应用于分类与回归问题。其核心思想是通过计算待分类样本与训练集中各样本的距离,选取最近的K个邻居,根据多数投票原则确定分类结果。K值的选择对算法效果至关重要,通常取奇数以避免二分类中的平票情况,并通过交叉验证确定最优K值。特征处理方面,二进制特征常用海明距离,数值型特征则多用欧氏距离。KNN的优势在于直观易懂,适合小样本、低维数据,但面对大规模或高维数据时,计算成本高且易受维度灾难影响。常见应用包括图像识别、推荐系统等。为提高效率,可结合降维技术或使用
2025-05-20 12:21:59
720
原创 【漫话机器学习系列】269.K-Means聚类算法(K-Means Clustering)
K-Means聚类算法是一种基于距离的无监督机器学习方法,旨在将数据集划分为K个不重叠的簇,使得簇内数据点相似度高,簇间差异大。该算法实现简单、效率高,广泛应用于市场细分、图像压缩等领域。其核心步骤包括:随机初始化K个中心点、将样本分配到最近的中心点、更新中心点位置,并重复这些步骤直至收敛。K值的选择对聚类效果至关重要,常用方法有肘部法则和轮廓系数等。K-Means算法虽易于实现和解释,但需手动指定K值,且对初始中心敏感,仅适用于凸形聚类。掌握K-Means是学习更复杂聚类模型的基础。
2025-05-20 12:14:03
1867
原创 【漫话机器学习系列】268. K 折交叉验证(K-Fold Cross-Validation)
K折交叉验证(K-Fold Cross-Validation)是一种评估机器学习模型性能的重采样方法,通过将训练数据划分为K个等份,轮流使用其中一份作为验证集,其余作为训练集,反复训练和验证模型,以评估其在未知数据上的泛化能力。这种方法减少了模型评估的方差,提高了评估的鲁棒性,并更充分地利用了数据。K值的选择常见为5或10,其中10折交叉验证在偏差与方差之间取得了较好的平衡。损失函数可以是均方误差、对数损失函数或精度,根据任务需要选择。
2025-05-19 07:52:10
1122
原创 【漫话机器学习系列】267.JOINS
本文通过图解方式详细解析了SQL中的多表连接(JOIN)操作,适合SQL初学者、中级开发者和数据分析师快速理解。文章首先介绍了JOIN的基本概念,随后通过图示展示了五种常见的JOIN类型:LEFT JOIN(左连接)、RIGHT JOIN(右连接)、INNER JOIN(内连接)、FULL OUTER JOIN(全外连接)和OUTER MINUS INNER(外连接减去内连接)。每种JOIN类型都配有详细的语法说明和实际应用场景,帮助读者理解其本质区别。文章还提供了对比一览表,总结了各JOIN类型的特点,并
2025-05-19 07:40:51
815
原创 【漫话机器学习系列】266.雅可比矩阵(Jacobian Matrix)
雅可比矩阵是描述多变量向量函数一阶偏导数的矩阵,广泛应用于深度学习、优化算法、机器人控制等领域。它通过矩阵形式表示输入变量微小变化对输出变量的影响,起到局部线性近似的作用。在神经网络的反向传播、自动微分系统、非线性最小二乘优化及机器人动力学中,雅可比矩阵都是关键工具。其几何意义在于描述向量场的局部线性变换,如旋转和缩放。通过雅可比矩阵,可以更直观地理解多变量函数的变化关系,为复杂系统的分析和优化提供数学基础。
2025-05-18 09:30:22
850
原创 【漫话机器学习系列】265.普拉托变换的相关问题(Issues With Platt Scaling)
PlattScaling是一种广泛使用的概率校准方法,旨在将机器学习模型的输出分数映射为概率,以提高预测结果的可解释性和实用性。然而,这种方法并非没有缺陷。首先,PlattScaling通过训练额外的逻辑回归模型来实现校准,这通常需要进行交叉验证以避免过拟合,导致计算资源和时间的显著增加。其次,由于过分关注概率拟合,可能会导致预测概率与实际分类结果不一致,特别是在数据分布不平衡的情况下。为了解决这些问题,可以考虑使用更轻量的校准方法如IsotonicRegression,或对不平衡数据进行重采样。尽管Pla
2025-05-18 09:22:51
808
原创 【漫话机器学习系列】264.内距(又称四分位差)Interquartile Range
内距(Interquartile Range,IQR)是数据分析中用于识别异常值的重要工具。IQR定义为第三四分位数(Q3)与第一四分位数(Q1)之差,表示数据中间50%的范围。通过IQR,可以计算异常值的上下界,通常为Q1-1.5×IQR和Q3+1.5×IQR,超出此范围的数据点被视为异常值。IQR方法相比标准差法更稳健,尤其适用于非正态分布数据。在数据清洗、可视化和机器学习特征工程中,IQR被广泛应用。例如,在Python中,可以通过计算IQR和设定上下界来识别异常值。IQR与箱型图结合使用,能直观展示
2025-05-17 15:23:21
893
原创 【漫话机器学习系列】263.线性插值(Interpolation)
线性插值是一种在数据科学与机器学习中常用的技术,用于填补缺失数据。它通过在已知数据点之间画一条直线,根据直线的斜率来推测中间未知点的数值。这种方法简单直观,适用于多种场景,如数据清洗、图像处理、动画插帧、金融建模和传感器数据补全等。线性插值的优点在于其简单快速、易于实现,且不需要引入外部假设,但它也有局限性,如不能处理非线性变化趋势和对突变数据敏感。通过Python中的Pandas或NumPy库,可以轻松实现线性插值。尽管线性插值是数据插值的“入门款”,但其高效性和直观性使其在众多实际项目中得到广泛应用。
2025-05-17 15:14:22
965
原创 【漫话机器学习系列】262.交叉项(Interaction Term)
交叉项(InteractionTerm)在回归模型中用于捕捉特征变量之间的相互作用,当目标变量的变化依赖于多个特征的联合影响时,交叉项显得尤为重要。其数学形式通常表现为两个或多个特征变量的乘积,如回归模型中的 (x_1 \times x_2),用于衡量它们的协同效应。引入交叉项可以提升模型的解释能力和预测精度,尤其在广告点击率、房价预测和生物统计等场景中,忽略交叉项可能导致模型遗漏关键信息。在实际建模中,可以通过手动创建交叉项或使用工具如 PolynomialFeatures 自动生成。然而,交叉项的存在增
2025-05-16 12:12:49
974
原创 【漫话机器学习系列】261.工具变量(Instrumental Variables)
在数据建模与因果推断过程中,我们经常遇到一个棘手问题:内生性(Endogeneity)。它会导致模型估计产生偏差,进而误导决策。在这篇文章中,我们将结合一幅图解,用通俗语言讲清楚什么是工具变量(Instrumental Variables, IV),它能解决什么问题,以及我们应该如何理解它的使用逻辑。
2025-05-16 12:06:29
1109
原创 【漫话机器学习系列】260.在前向神经网络中初始权重(Initializing Weights In Feedforward Neural Networks)
在神经网络训练中,权重初始化是一个关键步骤,它影响模型的收敛速度和性能。文章通过图解和代码示例,详细介绍了权重初始化的三大原则:使用小的随机数打破对称性、通常从正态分布中抽取初始权重、偏差通常预置为0或小正数。此外,文章还提到了Xavier和He初始化等更精细的策略,这些策略根据激活函数的不同来优化初始权重的分布,以保持前向和反向传播中激活值与梯度的稳定性。通过PyTorch的代码示例,文章展示了如何在实践中应用这些初始化策略。最后,文章强调了正确初始化的重要性,并提供了相关阅读材料,帮助读者更深入地理解这
2025-05-15 12:24:29
1158
原创 吴恩达《如何在 AI 领域制定职业规划》核心内容总结
AI职业规划的核心框架可分为学习基础技能、实践项目和求职策略三步骤。首先,学习基础技能应贯穿整个职业生涯,包括机器学习、深度学习、数学基础和软件开发等,建议通过体系化课程和持续小步学习来提升。其次,实践项目是技能深化与作品集构建的关键,需聚焦业务问题,选择与职业目标匹配的项目,并采用合适的执行框架和方法论。最后,求职策略建议渐进式转型,通过信息性访谈和优化简历等方式提升求职成功率。
2025-05-15 08:16:27
940
原创 【漫话机器学习系列】259.神经网络参数的初始化(Initialization Of Neural Network Parameters)
神经网络参数初始化是构建高效稳定模型的关键步骤。本文通过手绘风格图,详细解析了参数初始化的背景、方法及其数学依据。参数初始化不当可能导致梯度消失、爆炸或收敛缓慢等问题。常见的初始化方法包括从均匀分布或正态分布中随机提取初始权重,并控制初始化的规模。Xavier初始化是适用于sigmoid和tanh激活函数的经典方案,旨在保持激活值和梯度的方差稳定。此外,还介绍了He初始化和LeCun初始化等针对不同激活函数的优化方法。
2025-05-14 12:12:05
1622
原创 【漫话机器学习系列】258.拐点(Inflection Point)
拐点(Inflection Point)是数学分析中一个关键概念,指函数图像上曲率方向发生变化的点,即由凸变凹或由凹变凸的位置。通过二阶导数的符号变化可以识别拐点:当二阶导数f''(x)由正变负或由负变正时,对应的x值即为拐点。拐点在实际中有广泛应用,例如在机器学习中用于判断模型过拟合,在金融分析中用于预测趋势反转,在疫情研究中用于预测传播拐点等。掌握拐点的概念和识别方法,有助于更好地理解数据变化规律,并在多个领域中做出有效决策。
2025-05-14 11:58:52
970
原创 【漫话机器学习系列】257.填补缺失值(Imputing Missing Values)
在数据科学领域,处理缺失值是数据预处理的关键步骤,直接影响模型性能。本文介绍了几种常见的缺失值填补方法:对于定量变量(如年龄、收入),常用均值填补,以减少数据波动;对于定性变量(如性别、城市),则使用众数填补,以保持数据分布一致性。此外,对于缺失值较多或与其他特征相关性较强的情况,可以采用模型预测填补,如K近邻(KNN)算法。其他高级方法包括插值法、多重插补(MICE)、删除缺失行/列或添加缺失值指示变量。
2025-05-13 12:10:38
1398
原创 【漫话机器学习系列】256.用 k-NN 填补缺失值
在处理数据科学项目中的缺失值时,k-NN(k最近邻)填补是一种有效的方法。本文介绍了k-NN填补的原理、实现步骤及其应用场景。k-NN填补通过找到与缺失样本最相似的k个样本,利用它们的特征值来填补缺失项,通常能取得比简单均值填补更好的效果。实现时,可以使用scikit-learn中的KNNImputer类,并注意数据标准化和合理选择k值。k-NN填补适用于客户信息表、医疗数据、设备传感器数据等场景,但在大数据集上计算复杂度较高。总体而言,k-NN填补是一种智能且效果良好的缺失值处理方法,特别适用于中小规模数
2025-05-13 12:06:36
1090
原创 【漫话机器学习系列】255.独立同分布(Independent and Identically Distributed,简称 IID)
独立同分布(IID)是指数据之间彼此独立且来源于相同的概率分布。它是很多理论推导和模型设计的隐含前提。在实际应用中,要注意数据是否满足 IID 假设,并根据实际情况灵活处理。理解 IID,不仅能让我们更好地理解算法的适用条件,也能在遇到偏离 IID 的数据时,作出更合理的建模选择。
2025-05-12 12:17:13
939
原创 【漫话机器学习系列】254.假设空间(Hypothesis Space)
假设空间(Hypothesis Space)是机器学习中模型选择的核心概念,指在模型训练过程中预先设定的一组可能函数集合,用于最小化损失函数。假设空间的大小直接影响模型的能力、泛化能力和预测效果。假设空间越大,模型拟合能力越强,但可能导致过拟合;反之,假设空间过小则可能导致欠拟合。理解假设空间有助于在模型设计中权衡偏差与方差,选择合适的模型类型和参数,提升泛化能力。例如,线性核函数的支持向量机假设空间限于线性函数,而高斯核则允许更复杂的非线性边界。
2025-05-12 12:12:33
592
原创 【漫话机器学习系列】253.超平面(Hyperplane)
超平面(Hyperplane)是n维空间中的一个(n-1)维线性子空间,用于将空间划分为两部分。在二维空间中,超平面表现为一条直线;在三维空间中,它是一个平面;而在更高维空间中,虽然无法直观可视化,但其数学定义仍然适用。超平面在机器学习和数据科学中尤为重要,特别是在支持向量机(SVM)中,它用于在不同类别的数据点之间建立决策边界,以实现分类任务。此外,超平面在处理高维数据和深度学习中的特征空间分割方面也发挥着关键作用。通过理解超平面的几何和数学特性,可以更好地掌握其在各种科学和工程应用中的重要性。
2025-05-11 09:20:21
1120
原创 【漫话机器学习系列】252.零损失(0-1 Loss)
零一损失函数(0-1 Loss)是机器学习中用于衡量分类模型预测准确性的基本工具。其核心思想是:当模型预测正确时,损失为0;预测错误时,损失为1。这种二元特性使得零一损失函数在直观上易于理解,但在实际模型训练中,由于其不可导性和优化困难,通常不直接用于优化过程。相反,训练中常使用如交叉熵损失或铰链损失等可导的替代函数。然而,在模型评估阶段,零一损失函数通过计算准确率(Accuracy)来评估模型性能,成为衡量分类效果的重要指标。
2025-05-11 09:06:13
695
原创 【漫话机器学习系列】251.约登指数(Youden‘s Index)
约登指数(Youden's Index)是由W.J. Youden提出的一种二分类模型评估指标,用于衡量模型的整体分类性能。它通过结合真正率(Sensitivity)和特异度(Specificity)来评估模型识别正负样本的能力,计算公式为J = Sensitivity + Specificity - 1。约登指数的取值范围为[-1, 1],值越大表示模型性能越好,其中J=1表示完美分类,J=0表示模型性能与随机猜测无异,J<0则表示模型表现比随机猜测更差。
2025-05-10 10:04:45
1264
原创 【漫话机器学习系列】250.异或函数(XOR Function)
异或函数(XOR Function)是逻辑运算中的一种基础函数,定义为当两个输入不同时输出1,相同时输出0。这一简单的逻辑运算在多个领域中扮演着重要角色。在机器学习和深度学习中,异或函数因其非线性可分性质,推动了多层感知机的发展。在加密和编码领域,异或运算因其可逆性被广泛应用于数据加密和校验。在逻辑电路设计中,异或门是构建加法器等关键模块的基础。Python中可以通过简单的算术或按位操作实现异或函数。理解异或函数不仅对计算机科学和人工智能的学习至关重要,也是掌握现代技术发展的基石。
2025-05-10 10:04:30
864
原创 【漫话机器学习系列】249.Word2Vec自然语言训练模型
Word2Vec是Google团队于2013年提出的一种自然语言处理技术,旨在将词语映射到低维向量空间,以捕捉词语间的语义和语法关系。与传统的one-hot编码相比,Word2Vec通过连续向量表示词语,解决了稀疏性和高维度问题,并能有效体现词语间的相似性。Word2Vec有两种主要训练方法:CBOW(通过上下文预测中心词)和Skip-gram(通过中心词预测上下文),分别适用于不同规模的数据集。训练后的词向量具备语义相似性、语法相似性和向量运算特性,广泛应用于文本分类、情感分析、推荐系统等任务。
2025-05-09 12:23:46
848
原创 【漫话机器学习系列】248.什么是代价(损失)函数(Why It Called A Cost Function)
代价函数(Cost Function)或损失函数(Loss Function)在机器学习和深度学习中扮演着核心角色,用于衡量模型预测值与真实值之间的差异。代价函数的目标是通过最小化这个差异来优化模型参数,从而提高预测准确性。损失函数通常针对单个样本的误差,而代价函数则是对整个训练集的损失进行平均或累计。常见的代价函数包括均方误差(MSE)和交叉熵损失(Cross Entropy Loss),分别适用于回归和分类任务。代价函数的重要性在于它指导模型参数的更新方向,衡量模型的性能,并直接影响最终模型的效果。
2025-05-09 09:30:41
889
原创 【漫话机器学习系列】247.当 N=整个母体(WHEN N=POPULATION)
这听起来似乎是个合理的质疑。毕竟,如果数据已经完整,直观上我们似乎可以直接进行确定性的分析,何需再依赖概率与推断?但实际上,答案并不如此简单。本文将详细解释这个问题的本质,并帮助大家深入理解。
2025-05-08 12:18:16
842
原创 【漫话机器学习系列】246.何时有缺失值的样本才可删除?(When Can We Delete Observations With Missing Values )
判断缺失机制:是随机的,还是有模式的?评估缺失对整体数据的影响:是否会引入偏差?谨慎处理:不要一刀切地删除所有缺失样本,应根据具体情况决定删除、填充或建模。“如果缺失是随机的或者可以在其他特征中体现,那么可以删除;否则,缺失本身是信息的一部分,删除可能带来偏差。
2025-05-08 12:15:12
550
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人