【机器学习】机器学习的基本分类-监督学习-逻辑回归(Logistic Regression)

逻辑回归是一种分类算法,尽管名字中包含“回归”,但其主要用于解决二分类和多分类问题。它通过学习一个逻辑函数,预测输入属于某个类别的概率。


1. 逻辑回归的基本概念

目标

逻辑回归的目标是找到一个函数 h(x),输出一个概率值 P(y=1|x),表示输入样本 x 属于正类的概率。

逻辑函数(Sigmoid 函数)

逻辑回归使用 Sigmoid 函数将线性回归的结果映射到 (0, 1) 之间:

h(x) = \frac{1}{1 + e^{-z}}, \quad z = w^T x + b

其中:

  • z 是线性模型的结果。
  • h(x) 是预测为正类的概率。

【机器学习】机器学习的基本分类-监督学习-逻辑回归-Sigmoid 函数-CSDN博客


2. 逻辑回归的损失函数

为了优化模型参数 w 和 b,逻辑回归最小化 对数似然损失函数

L(w, b) = -\frac{1}{m} \sum_{i=1}^m \left[ y_i \log(h(x_i)) + (1 - y_i) \log(1 - h(x_i)) \right]

其中:

  • m 是样本数量。
  • y_i \in \{0, 1\}是第 i 个样本的真实标签。

逻辑回归通过梯度下降或其他优化算法最小化该损失函数。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值