深度结构(Deep Architecture)
深度结构(Deep Architecture)是深度学习领域中的一个重要概念,指的是具有多个层次的神经网络架构。在这些架构中,每一层的输出作为下一层的输入,通常用于学习数据的高级抽象表示。随着层数的增加,网络能够逐步提取越来越复杂和抽象的特征。
深度结构的优势在于其通过多层处理,可以捕捉到数据中的复杂模式,并且具有较强的表示能力。深度结构通常用于图像处理、语音识别、自然语言处理等任务。
核心思想
深度结构的核心思想是通过多层网络逐步学习和提取特征。在传统的浅层神经网络中,模型可能只能学习到简单的线性特征,而深度神经网络则可以通过多层堆叠的方式,捕捉更加复杂的非线性关系。
- 浅层神经网络:通常包含少数几层,每一层的输出通过线性变换直接影响最终的预测结果,模型能力较弱。
- 深层神经网络:包含更多的隐含层,每一层都通过复杂的非线性变换逐渐逼近目标函数,从而实现更复杂的映射。
常见的深度结构
1. 全连接神经网络(Fully Connected Neural Networks, FCNN)
全连接神经网络是最基础的深度学习模型,每一层的所有神经元都与前一层的所有神经元相连接。
- 结构:由多个全连接层(dense layers)组成,通常适用于结构化数据(如表格数据)。
- 优点:实