【深度学习】常见模型-BERT(Bidirectional Encoder Representations from Transformers)(双向编码器表示)

BERT(Bidirectional Encoder Representations from Transformers)

🔹 BERT 是什么?

BERT 是 Google 在 2018 年推出的 NLP(自然语言处理)模型,全称 Bidirectional Encoder Representations from Transformers(双向编码器表示)
BERT 采用 Transformer 结构,并使用 双向(Bidirectional)学习方式,与传统的单向语言模型(如 GPT)不同,它能同时利用 上下文信息,提升 NLP 任务的理解能力。


🔹 BERT 的关键技术
  1. Masked Language Model(MLM,掩码语言模型)

    • 训练时随机 屏蔽部分单词,让模型通过上下文预测这些被遮挡的词汇。
    • 例如:
      输入I love [MASK] movies.
      目标:模型预测 [MASK] 词应该是 "watching"
  2. Next Sentence Predic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值