BERT(Bidirectional Encoder Representations from Transformers)
🔹 BERT 是什么?
BERT 是 Google 在 2018 年推出的 NLP(自然语言处理)模型,全称 Bidirectional Encoder Representations from Transformers(双向编码器表示)。
BERT 采用 Transformer 结构,并使用 双向(Bidirectional)学习方式,与传统的单向语言模型(如 GPT)不同,它能同时利用 上下文信息,提升 NLP 任务的理解能力。
🔹 BERT 的关键技术
-
Masked Language Model(MLM,掩码语言模型)
- 训练时随机 屏蔽部分单词,让模型通过上下文预测这些被遮挡的词汇。
- 例如:
输入:I love [MASK] movies.
目标:模型预测[MASK]
词应该是"watching"
。
-
Next Sentence Predic