拉格朗日对偶(Lagrange Duality)
1. 概念
拉格朗日对偶(Lagrange Duality)是优化理论中的一个重要方法,用于将约束优化问题转换为更易求解的对偶问题。它在凸优化、经济学、机器学习(如 SVM)等领域有广泛应用。
2. 原始问题(Primal Problem)
考虑一个标准的约束优化问题:
其中:
- f(x) 是目标函数
是不等式约束
是等式约束<
拉格朗日对偶(Lagrange Duality)是优化理论中的一个重要方法,用于将约束优化问题转换为更易求解的对偶问题。它在凸优化、经济学、机器学习(如 SVM)等领域有广泛应用。
考虑一个标准的约束优化问题:
其中: