【深度学习】计算机视觉(CV)-目标检测-SSD(Single Shot MultiBox Detector)—— 单次检测多框检测器

SSD(Single Shot MultiBox Detector)—— 单次检测多框检测器

1.什么是 SSD?

SSD (Single Shot MultiBox Detector) 是一种用于 目标检测(Object Detection)深度学习模型,由 Wei Liu 等人 在 2016 年提出。
它采用 单阶段(Single Stage) 方法,能够 直接从图像中检测多个对象,并输出类别和边界框,比传统的两阶段方法(如 Faster R-CNN)更快。


2.SSD 的核心特点
  • 单阶段检测:相比 Faster R-CNN 需要两步(提取区域 + 识别),SSD 一步 就能完成目标检测。
  • 多尺度特征检测:在 不同层级 进行检测,以适应大、小目标。
  • 高效的先验框(Default Boxes):类似 YOLO 的锚框(Anchor Boxes),用于提高检测精度。
  • 轻量级计算:比 Faster R-CNN 更快,适用于 实时检测

3.SSD 的网络结构

SSD 采用 VGG16MobileNet 作为骨干网络(Backbone),然后在 不同尺度的特征图上检测目标

SSD 结构分为三部分

  • 主干网络(Backbone):通常是 VGG16 或 MobileNet,用于提取特征。
  • 多尺度检测层(Extra Feature Layers):在不同层进行检测,提高小目标的检测效果。
  • 预测层(Prediction Layers):利用 默认框(Default Boxes) 进行分类和回归。

SSD 典型架构

输入图像(300x300) ➝ VGG16 提取特征 ➝ 额外卷积层 ➝ 多尺度检测 ➝ 输出目标类别和边界框

4.SSD 的核心算法

1)多尺度特征图(Feature Maps)

  • SSD 在 不同尺度 进行检测,例如:
    • conv4_3 层(大目标检测)
    • conv7 层(中等目标)
    • conv8_2 ~ conv11_2 层(小目标)
  • 这样能 同时检测不同尺寸的物体,提高检测精度。

2)默认框(Default Boxes)

  • SSD 采用 多个尺寸和纵横比的默认框 进行检测。
  • 例如,一个位置可以有多个比例(1:1、1:2、2:1)和大小的框。
  • 通过非极大值抑制(NMS)筛选最优框

3)损失函数(Loss Function) SSD 采用 多任务损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值