深度学习——基础概念

本文介绍了深度学习的基本概念,它是机器学习的一个分支,通过多层次的表示来处理复杂问题。深度学习的核心是表示学习,如自编码器,能从数据中发现表示并进行转化。多层感知机是深度学习的实例,包含输入、隐藏和输出层,其深度对应于模型的复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        最近,由于毕业论文需要,我开始阅读了伊恩·古德费洛等人写的《深度学习》一书。此书十分经典,可谓是机器学习的圣经。第一章节是《引言》,大致介绍了升读学习的相关概念。这里,我就将本书的第一章《引言》做个小结。

        首先,最重要的问题是:什么是深度学习?书本的第五页倒数第一自然段指出:“深度学习(deep learning)是一种特定类型的机器学习,巨有强大的能力和灵活性,它将大千世界被视为嵌套的层次概念体系(由较简单概念间的联系定义复杂概念、从一般抽象概括到高级抽象表示)。”深度学习的发展史经历了控制论(cybernetics)、联结主义(connectionism)、人工神经网络(artificial neural network,ANN)最后以深度学习之名复兴。

        简而言之,深度学习通过其他较简单的表示来表达复杂表示,解决了表示学习中的核心问题,即用相关算法来发觉表示本身,而不仅仅把表示映射到输出。深度学习模型的典型例子是前馈深度网络或者说是多层感知机(multilayer perceptron,MLP)。多层感知机仅仅是一个将一组输入值映射到输出值的数学函数。该函数又许多较简单的函数复合而成,不同数学函数的每一次应用都为输入提供了新的表示。一般来讲分为如下三个部分:可见层(输入层)、隐藏层、输出(输出层),整个图的最长路径视为模型的深度,这个概念与树的深度类似。

        在第二自然段中,我们介绍了深度学习的概念,并提到了机器学习这一概念。那什么是机器学习呢?书本的第二页第二自然段指出:“AI系统需要具备自己获取知识的能力,即从原始数据中提取模式的能力。这种能力称为机器学习(machine learning)。”

        在第三自然段中,我们介绍了深度学习的细节,并提到了表示学习这一概念。表示学习是指用机器学习来发觉表示本身,而不仅仅把表示映射到输出的方法。表示学习算法最典型的例子是自编码器(autoencoder)。自编码器有一个编码器函数和一个解码器函数组合而成。编码器函数将输入数据转换为一种不同的表示,而解码器函数则将这个新的表示转换回原来的形式。我们期望当输入数据经过编码器和解码器之后尽可能多地保留信息,同时希望新的表示有各种好的特性,这也是自编码器的训练目标。

       第一部分的学习总结就是这么多,如有错误敬请指出并加以斧正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TIM33470348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值