食品加工厂可视化视频AI智能监管方案,助力工厂数字化运营

本文介绍了食品智慧工厂面临的监控分散、生产数据割裂等问题,提出TSINGSEE青犀视频的综合管理系统,利用AI和边缘计算技术进行人员违规行为、安全着装、安全生产和消防安全的智能检测,以及可视化视频管理和巡检管理的升级,旨在实现高效、安全的食品生产监管。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景与需求分析

随着科技的不断进步和人们对食品安全和质量的日益关注,食品智慧工厂的建设成为了食品行业的一个重要趋势。智能化的食品工厂可以利用先进的技术和自动化系统,提高生产效率、降低监管成本,并确保产品的质量和安全。

行业痛点:

1)监控工具分散,管控难度高

工厂内监控管理系统繁多,且均独立运行分散管理,运维人员无法实时、全面、准确地了解现场生产情况和工序流程。

2)生产系统多,统筹管理难

生产数据分散在不同管理平台,管理决策需要统筹全局数据进行分析,而分散割裂的数据无法支撑管理者进行高效决策。

3)巡检工作繁琐,运维压力大

工厂具有厂区规模大、生产设备多、监控设备散等特点,巡检主要依赖人力,压力大成本高,运维人员无法及时发现问题。

4)仓储物料多批次追溯难

ERP、BOM等信息的追溯性差,工厂管理信息统计滞后,物料及库存管理难度大。

二、方案概述

针对食品加工厂的智慧化、高效化监管需求,TSINGSEE青犀视频可基于安防监控视频综合管理系统EasyCVR与AI边缘计算智能分析网关V4,打造属于食品加工厂的智能化、可视化、数字化视频综合监管平台。基于厂区/车间内摄像头采集的视频图像数据,通过人工智能技术实时识别安全着装规范、作业规范、设备状态、环境安全等安全生产因素,及时将危险事件反馈给安全管理人员,提高工厂安全生产管理效率。

三、方案特点

1、人员违规行为检测

利用AI边缘计算智能分析网关V4内部署的AI算法模型,对接入的食品加工厂监控视频流进行人、车、物、行为的实时检测与分析,上报识别结果,并能进行语音告警播放。算法可按需组合、按场景配置,每个摄像头可同时配置3种算法,能同时对16路视频流进行处理和分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值