- 博客(819)
- 收藏
- 关注

原创 【Oracle】Oracle rman工具使用(真的细)
Oracle RMAN(Recovery Manager)是Oracle数据库备份和恢复的官方工具,它提供的备份和恢复功能非常强大和可靠。RMAN可以备份整个数据库或特定表空间、数据文件、控制文件和归档日志,同时还可以进行增量备份和增量恢复。RMAN还提供了诸如备份验证、备份优化、备份复制、备份集管理、恢复操作、自动备份、自动恢复等高级功能。它使用的备份和恢复格式是Oracle通用的备份集(Backup Set),这使得备份和恢复非常灵活和高效。
2023-09-19 01:00:01
7465
2

原创 【Oracle】Oracle查锁表(史上最全)
Oracle分两种锁,一种是DDL锁,一种是DML锁。Oracle分两种锁,一种是DDL锁,一种是DML锁。
2023-08-24 18:17:06
41935

原创 Oracle执行计划
执行计划:一条查询语句在ORACLE中的执行过程或访问路径的描述。即就是对一个查询任务,做出一份怎样去完成任务的详细方案。如果要分析某条SQL的性能问题,通常我们要先看SQL的执行计划,看看SQL的每一步执行是否存在问题。看懂执行计划也就成了SQL优化的先决条件。通过执行计划定位性能问题,定位后就通过建立索引、修改sql等解决问题。
2023-08-21 00:50:32
7744

原创 Oracle解锁表、包、用户、杀会话、停job
执行存过kill_session(),kill掉上面的那个session会话。找到你需要kill的那个session会话,拿到SID及serial#:159, 3729。sys用户以sysdba身份登录Oracle数据库,给需要使用该包(sys用户以sysdba身份登录Oracle数据库,创建包。
2023-08-18 22:37:00
678

原创 Notepad++正则匹配
KaTeX parse error: Undefined control sequence: \n at position 3: \r\̲n̲,而不是\r\n。Notepad++正则表达式字符串最长不能超过69个字符。Note: 以换行符结尾表示是。
2023-08-18 18:08:06
7395

原创 Oracle AUTOTRACE故障处理:SP2-0618、SP2-0611
Oracle提供了一个称为EXPLAIN PLAN的工具,使用EXPLAIN PLAN命令,允许生成执行计划输出。SQL*PLUS提供了AUTOTRACE工具,允许查看已执行查询的执行计划,而不必使用EXPLAIN PLAN命令。
2023-08-17 02:19:02
522

原创 Oracle好书推荐
Oracle书籍清单一、《oracle循序渐渐》二、《深入解析Oracle》三、《大话Oracle RAC》四、《教你成为10g OCP》五、《RMAN备份与恢复》六、《精通PL\SQL编程》七、《突击Oracle DBA》八、《Oracle性能诊断艺术》一、《oracle循序渐渐》二、《深入解析Oracle》三、《大话Oracle RAC》四、《教你成为10g OCP》五、《RMAN备份与恢复》六、《精通PL\SQL编程》七、《突击Oracle DBA》八、《Oracle性能诊断艺术》
2023-08-13 10:20:53
1628
2

原创 Oracle数据库如何修改字符集
我们需要在数据库处于open模式下执行维护操作,同时保证此时其他用户不在数据库上建立连接和执行任务,就需要Oracle数据库启用受限会话模式。修改数据库并发执行作业时使用的进程数量为0,不让Oracle数据库进行并发作业。修改Oracle数据库字符集为ZHS16GBK。以sysdba身份登录到数据库。
2023-08-11 13:31:50
8927
2

原创 Oracle数据库修改进程连接数
我们可以看到,Oracle数据库默认只支持最大150个客户端连接。现在再去用PL/SQL登录Oracle数据库发现已经登录不上了。关闭Oracle的监听器服务后,我们下一步需要登录Oracle数据库,用命令停止Oracle实例。然后,我们需要重新登录到Oracle数据库中,把Oracle‘数据库实例启动起来。我们可以看到,现在Oracle监听服务已经能够发现“tzq”这个实例了。是的,上面我们已经把数据库关闭了,所以没有实例是正常的。我们能现在可以看到,Oracle数据库已经装载完毕、数据库已经打开。
2023-08-09 20:42:18
5210

原创 Windows下安装oracle_fdw:从PostgreSQL中访问Oracle数据库
Windows下安装oracle_fdw:从PostgreSQL中访问Oracle数据库
2023-08-09 00:35:30
2014

原创 【Sqoop】Windows下安装Sqoop
1.1、Sqoop是什么Sqoop是一个用于Hadoop和结构化数据存储(如关系型数据库)之间进行高效传输大批量数据的工具。它包括以下两个方面:1.1.1、可以使用Sqoop将数据从关系型数据库管理系统(如MySql)导入到Hadoop系统(如HDFS、Hive、HBase)中。1.1.2、将数据从Hadoop系统中抽取并导出到关系型数据库(如MySql)。1.2、底层实现原理 Sqoop的核心设计思想是利用MapReduce加快数据传输速度。
2023-08-07 23:02:07
2347
3

原创 【Scala】Windows下安装Scala(以Scala 2.11.12为例)
Windows下安装Scala(以Scala 2.11.12为例)
2023-08-06 23:03:53
11632
7

原创 【Kafka】Windows下安装Kafka(图文记录详细步骤)
(一)、Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。(二)、Kafka 本质上是⼀个消息队列。与zeromq不同的是,Kafka是一个独立的框架而不是一个库。通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。高吞吐量 :即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
2023-08-06 09:39:40
69688
110

原创 【Zookeeper】Windows下安装Zookeeper(图文记录详细步骤,手把手包安装成功)
Windows下安装Zookeeper(图文记录每一个步骤,手把手包安装成功)
2023-08-03 22:51:05
42253
71

原创 【Spark】Windows下安装Spark(亲测成功安装)
安装Spark之前,需要安装JDK、Hadoop、Scala。显示上面的正常运行界面,表示本地的spark环境已搭建完成!环境变量Path添加条目%SCALA_HOME%\bin。为了验证Scala是否安装成功,开启一个新的cmd窗口。环境变量Path添加条目%SPARK_HOME%\bin。为了验证Spark是否安装成功,开启一个新的cmd窗口。设置环境变量 %SCALA_HOME%设置环境变量 %SPARK_HOME%本地点击msi文件安装,安装目录为。可以看到Scala安装成功。安装方法就不赘述了。
2023-08-02 00:01:28
25352
32

原创 【Hive】Windows下安装Hive(包安装成功)(附:常见错误解答FAQ(Frequently Asked Questions))
【实操】【Hive】Windows下安装Hive(包安装成功)(附:常见错误解答FAQ(Frequently Asked Questions))
2023-07-31 23:17:40
13303
39

原创 【Hbase】Windows下安装HBase(图文记录详细步骤、常见错误解答FAQ(Frequently Asked Questions))
HBase(Hadoop Database),是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
2023-07-29 00:54:09
7466
37
原创 【Flask】Flask + Layui 实现数据导出为Excel并下载的方法
Flask+Layui实现Excel导出下载的方法:后端使用pandas生成Excel文件并通过内存流传输,前端通过AJAX请求触发下载。关键步骤包括:1)Flask端接收数据并转换为Excel;2)使用BytesIO避免临时文件;3)设置MIME类型实现浏览器下载;4)Layui前端处理交互逻辑。还提供了安全优化、大文件处理等扩展建议,并对比了不同导出方案的优缺点。该方法兼顾了开发效率和性能,适用于大多数Web应用的数据导出需求。
2025-08-18 07:35:52
336
原创 【openGauss】openGauss根据“-”拆分字符串为数组,取数组的第一个参数的值
openGauss中使用split_part函数拆分字符串为数组并获取第一个值的方法:通过split_part('字符串','分隔符',1)语法,可以按指定分隔符拆分字符串并返回第一个元素。例如split_part('2023-04-05','-',1)将返回"2023"。该函数依次接收字符串、分隔符和位置参数(从1开始计数),若未找到分隔符则返回原字符串。
2025-08-18 07:33:45
184
原创 【Flask】flask+Flower+Celery+layui+PostgreSQL实现一个定时任务管理系统
本文介绍了一个基于Flask+Flower+Celery+Layui+PostgreSQL的定时任务管理系统。该系统主要功能包括定时任务的增删改查(CRUD)、使用Flask-SocketIO实现任务执行实时通知,以及集成Flower监控Celery任务。系统采用分层架构,包含前端展示层(LayUI)、业务逻辑层(Flask)、任务执行层(Celery)和数据存储层(PostgreSQL)。文章详细介绍了项目结构、核心配置、数据模型定义及主要API实现,包括任务调度、WebSocket通信和Celery任务
2025-08-18 07:32:42
383
原创 【Flask】flask+Celery+layui+PostgreSQL实现一个后台管理系统(增加任务修改功能)
本文介绍了基于Flask+Celery+Layui+PostgreSQL的后台管理系统任务修改功能的实现方案。后端通过新增三个API接口实现:GET获取任务详情、PUT更新任务(含定时任务重新调度逻辑)、POST立即执行任务。前端采用Layui框架构建编辑表单,支持任务名称、类型、Cron表达式等字段的修改,并包含状态切换开关。系统通过Celery实现定时任务管理,在修改任务时自动取消原有任务并重新调度,确保任务配置变更后能正确执行。该方案完整实现了后台任务管理的CRUD功能,特别针对定时任务修改场景进行了
2025-08-14 00:34:15
415
原创 【Flask】flask+Celery+layui+PostgreSQL实现一个后台管理系统,能够对定时任务进行增删改查
本文介绍了基于Flask+Celery+Layui+PostgreSQL的后台管理系统实现方案,重点实现定时任务的增删改查功能。系统采用分层架构:Flask处理Web请求并与PostgreSQL交互,Celery管理异步/定时任务,Redis作为消息代理。核心实现包括:1)Flask配置及路由定义;2)PostgreSQL数据模型设计;3)Celery任务调度机制;4)前后端交互API。通过ScheduledTask模型存储任务元数据,结合Celery的定时功能实现任务调度,并提供了完整的CRUD操作接口。
2025-08-14 00:32:34
284
原创 【Flask】flask+layui+PostgreSQL实现一个后台管理系统,能够对定时任务进行增删改查
本文介绍了一个基于Flask+Layui+PostgreSQL的定时任务后台管理系统实现方案。系统采用MVC架构,包含完整的RESTful API设计,主要功能包括定时任务的增删改查、分页展示、状态管理和Cron表达式验证。后端使用Flask框架搭配SQLAlchemy ORM操作PostgreSQL数据库,前端采用Layui实现交互界面。文章详细展示了数据库表设计、Flask模型定义、API接口实现以及前端页面代码,提供了完整的解决方案,适合快速搭建任务管理系统参考使用。
2025-08-14 00:31:50
320
原创 【Flask】Flask 定时任务实现详解
本文介绍了在Flask框架中实现定时任务的完整解决方案,重点使用APScheduler库。主要内容包括:通过BackgroundScheduler创建后台调度器,配置SQLAlchemyJobStore实现任务持久化,支持cron定时、interval周期和date一次性三种任务类型。文章提供了任务动态管理接口(添加/查看/删除),并详细说明生产环境部署时需注意的多进程问题及其解决方案。同时对比了APScheduler与Celery的优缺点,建议简单场景使用APScheduler,分布式环境推荐Celery
2025-08-14 00:30:33
612
原创 【openGauss】openGauss执行计划解读
该执行计划展示了openGauss数据库对一个复杂聚合查询的处理过程。查询首先执行了两个子查询的Append操作,主要涉及对fin_tr_plan.tmc_plan_cashflows_t表的扫描,通过Bitmap Heap Scan和Bitmap Index Scan优化数据访问。查询条件包括多个日期范围过滤和状态标志检查,涉及大量数据(约480,000行/循环,共2个循环)。执行过程中存在大量I/O操作(共享缓冲区命中1,120,073次,读取12,791次),总耗时约22.9秒完成聚合计数操作。计划显
2025-08-14 00:28:31
903
原创 【openGauss】openGauss创建覆盖索引
openGauss支持创建包含非键列的覆盖索引,通过INCLUDE子句指定额外列。这些列不参与索引搜索,但能在仅索引扫描中直接返回,避免访问表数据。语法为在CREATE INDEX语句中添加INCLUDE(column_name,...)。注意非键列会增加索引大小并可能影响性能,目前仅ubtree索引支持此功能。范例展示了在tzq_log_t表上创建两个覆盖索引,分别包含system_code和log_code作为非键列。
2025-08-14 00:27:02
226
原创 【Layui】Layui实现带文字图标的可变色Div
本文介绍了使用Layui框架实现一个带文字图标的可变色DIV效果。通过300×300像素的卡片容器,集成了Layui图标、标题和描述文本,并添加了鼠标悬停交互效果。主要特点包括:1)使用Layui内置图标系统;2)CSS3过渡动画实现平滑变色(浅灰到浅蓝)和上浮效果;3)Flexbox布局确保内容居中;4)阴影增强营造悬浮层次感。代码简洁,仅需引入Layui资源即可实现专业UI效果,适合快速开发展示性组件。
2025-08-14 00:23:51
483
原创 【Flask】Flask-SQLAlchemy + Layui + PostgreSQL 实现批量删除功能
本文介绍了在Flask-SQLAlchemy+Layui+PostgreSQL环境中实现批量删除功能的完整解决方案。前端使用Layui Table渲染数据表格,通过复选框选择记录并发送AJAX请求;后端Flask应用接收ID列表,使用SQLAlchemy的IN操作符执行批量删除,并处理事务回滚;数据库层利用PostgreSQL的事务特性确保操作原子性。代码示例包括前端页面实现(含表格渲染和删除确认弹窗)、后端数据接口和批量删除接口,涵盖了从用户交互到数据库操作的全流程。该方案实现了高效、安全的批量数据删除功
2025-08-14 00:22:37
314
原创 【Flask】Did not attempt to load JSON data because the request Content-Type was not ‘application/json’
Flask请求报错"Did not attempt to load JSON data"的解决方案 当Flask报错请求头Content-Type不是application/json时,通常是由于客户端未正确设置请求头或发送了非JSON数据。解决方案有两种: 强制JSON请求(推荐):使用request.is_json检查请求头,确保Content-Type为application/json,再通过request.get_json()安全获取数据。 灵活处理:先尝试解析JSON,失败则转
2025-08-14 00:21:35
251
原创 【Python】Python把json数组数据转换成excel文件
本文介绍了使用Python将JSON数组数据转换为Excel文件的方法。首先需要安装pandas和openpyxl扩展库。提供了两个核心文件:DateTool.py包含日期处理工具类,支持获取月末日期和格式化时间等功能;json_to_excel.py实现核心转换功能,通过pandas读取JSON文件并转换为DataFrame后保存为Excel。示例代码展示了如何调用json_to_excel函数,其中输出文件名使用DateTool自动生成带时间戳的名称。该方法简单实用,适合需要将JSON数据导出为Exce
2025-08-14 00:21:01
113
原创 【PostgreSQL】PostgreSQL设置语句执行超时时间
PostgreSQL可以通过设置statement_timeout参数来控制SQL语句执行超时时间。本文示例将超时设为3秒(3000毫秒),然后测试执行5秒的pg_sleep函数,语句将因超时被终止。该功能可用于防止长时间运行的查询占用数据库资源。
2025-08-14 00:20:41
16
原创 【openGauss】openGauss计算两个日期之间的天数之差
openGauss计算日期天数差的方法:使用EXTRACT(EPOCH FROM)函数结合日期减法,将时间戳差值转换为秒数后除以86400(每日秒数)得到天数差。示例展示了计算固定日期差(2025-07-17与2024-07-16)和当前日期与指定日期(2025-09-28)的差值两种场景。该SQL语法简洁高效,适用于openGauss数据库环境下的日期计算需求。
2025-08-14 00:20:00
70
原创 【Python】python的sqlalchemy.engine.row.Row类型如何转换为dict字典类型
Python中SQLAlchemy的sqlalchemy.engine.row.Row类型转换为字典的主要方法包括:1)直接使用_asdict()方法(推荐);2)手动构建字典。针对不同场景,如单表查询、多表JOIN查询和JSON序列化处理,提供了具体实现方案。文章还给出了性能优化建议和常见问题排查方法,如字段名冲突处理、_sa_instance_state属性过滤等。这些方法可帮助开发者高效地将SQLAlchemy查询结果转换为字典,满足不同业务场景需求。
2025-08-14 00:19:36
209
原创 【前端】高亮显示代码行号插件:highlightjs-line-numbers.js,增加代码编辑器中行号与代码内容之间的间距
本文介绍了三种方法调整highlightjs-line-numbers.js插件中行号与代码的间距:1)通过CSS的padding-right属性增加行号右侧内边距;2)调整初始化参数lineNumberWidth;3)在容器级增加整体左侧留白。关键是通过CSS样式覆盖默认设置,建议使用!important提高优先级,并注意移动端适配使用相对单位。调整后可使行号显示更清晰美观,如"1 │console.log()"的效果。
2025-08-14 00:18:34
144
sed 与 awk(第二版)
2023-08-24
Python的Django怎么建网站的,有没有详细的资料
2023-12-14
TA创建的收藏夹 TA关注的收藏夹
TA关注的人