RS笔记:工业界推荐系统YouTubeDNN模型(召回层+排序层)[2016 YouTube]

本文详细介绍了YouTubeDNN推荐系统,包括召回侧和排序侧的模型架构与优化目标。召回侧通过训练得到用户和视频的embedding向量,并在预测阶段使用局部敏感哈希等方法快速检索候选视频。排序侧则以用户观看时长为优化目标,以提升广告曝光机会。模型训练时采用加权损失函数,并在预测阶段使用e^(wx+b)进行视频时长预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

捡起一束光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值