目标分类-垃圾分类数据集-2300张图-+对应分类文件夹整理+YOLO11cls一键训练脚本
● 数据集介绍:日常垃圾分类数据集,真实场景高质量图片数据;
● 适用实际项目应用:公共场所监控场景下垃圾分类项目,以及作为监控场景通用垃圾分类数据集场景数据的补充;
● 数据集类别:carboard、glass、metal、paper、plastic、trash;
● 标注说明:采用文件夹来区分不同的目标类别,标注质量高,可以直接用于如 YOLOCLS 的算法训练;
● 附赠训练示例:提供 YOLO11cls 一键训练脚本,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标分类-植物分类数据集-21000张图+对应分类文件夹整理+YOLO11cls一键训练脚本
● 数据集介绍:植物分类数据集,真实场景高质量图片数据;
● 适用实际项目应用:自然场景植物分类项目,以及作为通用分类数据集场景数据的补充;
● 数据集类别:
● 标注说明:采用文件夹来区分不同的目标类别,标注质量高,可以直接用于如 YOLOCLS 的算法训练;
● 附赠训练示例:提供 YOLO11cls 一键训练脚本,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标分类-花卉分类数据集-13000张图+对应分类文件夹整理+YOLO11cls一键训练脚本
● 数据集介绍:花卉分类数据集,真实场景高质量图片数据;
● 适用实际项目应用:自然场景花卉分类项目,以及作为通用分类数据集场景数据的补充;
● 数据集类别:water_lily、tulip、sunflower、rose、iris、dandelion、coreopsis、common_daisy、carnation、california_poppy、calendula、black_eyed_susan、bellflower、astilben;
● 标注说明:采用文件夹来区分不同的目标类别,标注质量高,可以直接用于如 YOLOCLS 的算法训练;
● 附赠训练示例:提供 YOLO11cls 一键训练脚本,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标分类-水果分类数据集-16000张图+对应分类文件夹整理+YOLO11cls一键训练脚本
● 数据集介绍:水果分类数据集,真实场景高质量图片数据;
● 适用实际项目应用:水果分类项目,以及作为通用分类数据集场景数据的补充;
● 数据集类别:Watermelon、Tomato、Strawberry、Raspberry、Potato Red、Pomegranate、Plum、Pineapple、Pepper Red、Pepper Green、Pear、Peach、Passion Fruit、Papaya、Orange、Onion White、Mango、Limes、Lemon、Kiwi、Grape Blue、Cucumber Ripe、Corn、Clementine、Cherry、Cantaloupe、Cactus fruit、Blueberry、Banana、Avocado、Apricot、Apple Granny Smith、Apple Braeburn;
● 标注说明:采用文件夹来区分不同的目标类别,标注质量高,可以直接用于如 YOLOCLS 的算法训练;
● 附赠训练示例:提供 YOLO11cls 一键训练脚本,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标分类-场景分类数据集-14000张图-+对应分类文件夹整理+YOLO11cls一键训练脚本
● 数据集介绍:自然场景分类数据集,真实场景高质量图片数据;
● 适用实际项目应用:自然场景下场景分类项目,以及作为通用场景分类数据集场景数据的补充;
● 数据集类别:buildings、forest、glacier、mountain、sea、street;
● 标注说明:采用文件夹来区分不同的目标类别,标注质量高,可以直接用于如 YOLOCLS 的算法训练;
● 附赠训练示例:提供 YOLO11cls 一键训练脚本,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
语音识别软件-基于PyQT+Whisper实现的语音识别软件设计-附项目源码+流程教程-优质项目实战
本软件Whisper语音识别应用是一款基于OpenAI Whisper模型开发的多语言语音识别工具,通过PyQt5构建了现代化深色主题界面,特别优化了中文识别体验。该应用支持中文、英语、日语等多种语言识别,并内置中文繁简转换功能,自动将繁体中文转为简体中文。应用采用异步处理方式,避免界面卡顿,同时提供实时进度显示和状态信息反馈。核心功能包括选择输出语言、选择和播放音频文件、一键开始识别以及结果展示,支持MP3、WAV、FLAC、M4A和OGG等常见音频格式。系统运行环境要求Ubuntu 18.04或更高版本,Python 3.8+,以及至少4GB RAM。应用使用"base"模型,内存消耗约为1GB,首次运行时会自动下载模型文件。系统依赖包括ffmpeg(音频处理)、mpv(音频播放)和PyQt5相关库,Python依赖主要有openai-whisper、torch、PyQt5、zhconv等。Whisper模型由OpenAI开发,能够在大量多样化的音频数据上执行语音识别、翻译、语言识别等任务,本应用对其进行了良好的界面封装,提供了直观易用的操作体验。
目标检测软件-基于PyQT实现的YOLOv12行人目标检测软件设计-附源码+流程教程
YOLOv12行人目标检测系统是由本人开发的专业级应用,基于最新YOLOv12模型专门针对行人检测进行优化,采用PyQt5构建现代化图形界面。系统核心功能包括高精度行人检测、实时参数调节、多格式结果导出和批量处理能力,支持GPU加速以提升检测速度。软件界面设计直观易用,左侧控制面板集成模型选择、参数配置和操作按钮,右侧显示区域展示图像、检测结果和系统日志。用户可通过拖拽上传图片或批量处理文件夹中的多张图像,并能实时调整置信度、IoU阈值等关键参数以适应不同场景。系统支持多种规格的YOLOv12模型(n/s/m/l/x),满足从轻量级移动应用到高精度服务器部署的各种需求。技术架构采用多线程设计,检测过程在后台执行不阻塞界面,同时实现智能内存管理和完善的异常处理机制。系统提供详细的检测结果表格和可视化标注,支持将结果保存为图像或JSON格式。适用于智能监控、安防系统、人流统计等场景,全面支持Windows、Linux和macOS平台。软件采用开源设计,用户可根据需要扩展检测类别或自定义界面样式,提供完整的开发文档和环境配置脚本,确保快速上手和灵活应用。
多模态大模型推理测试可视化平台Web-Streamlit版-支持Qwen2.5/InternVL3/Kimi三大模型-支持transformers/vllm推理引擎
## 资源名称(30字)
**多模态大模型推理平台-Streamlit版(支持Qwen2.5/InternVL3/Kimi三大模型)**
## 资源描述(800字内)
这是一款基于Streamlit开发的专业级多模态大模型推理测试平台,集成了当前最主流的三大视觉语言模型:阿里巴巴Qwen2.5-VL、上海AI实验室InternVL3和月之暗面Kimi-VL。该平台提供完整的Web界面,支持图文混合输入,实现了transformers和vLLM双推理框架切换,是AI开发者和研究人员进行多模态模型测试的理想工具。核心特性包括智能显存管理(支持30%-95%GPU使用率配置,有效防止OOM),模型缓存机制(避免重复加载,大幅提升推理速度),兼容性修复(解决Streamlit与PyTorch冲突),以及模块化架构设计(采用工厂模式,易于扩展新模型)。界面采用现代化蓝紫渐变配色,响应式左右分栏布局,支持实时状态反馈和结果复制。技术规格为Python 3.12.10 + Streamlit 1.45.1 + PyTorch 2.6.0 + vLLM 0.8.5,支持JPG/PNG图片输入和纯文本推理,推荐16GB+显存的NVIDIA GPU环境。交付内容包含完整源代码(553行主程序+模块化组件)、详细部署文档(275行README)、一键启动脚本、兼容性修复工具、图像处理工具库和完整的错误处理指南。该平台具有即用性强(一键部署)、成本效益高(本地部署降低API调用成本)、定制化强(开源架构便于二次开发)等商业价值,适用于AI研究机构的模型对比测试、企业AI部门的内部评估、教育培训的实验演示以及个人开发者的技术学习等多种场景,代表了当前多模态AI应用开发的最佳实践。
无人机场景-目标检测-夜间车辆检测数据集-1000张图-+对应VOC-COCO-YOLO三种格式标签+数据集划分脚本
● 数据集介绍:无人机场景夜间车辆检测数据集,真实场景高质量图片数据,涉及场景丰富,比如夜间无人机场景城市道路行驶车辆图片、夜间无人机场景城市道边停车车辆图片、夜间无人机场景停车场车辆图片、夜间无人机场景小区车辆图片、夜间无人机场景车辆遮挡、车辆严重遮挡图片数据等,数据集不区分轿车、SUV或货车类别,统一划分为 "car" 一个类别,;
● 适用实际项目应用:无人机场景下夜间车辆检测项目,以及作为无人机场景通用车辆检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
无人机场景-目标检测-车辆检测数据集-1000张图-+对应VOC-COCO-YOLO三种格式标签+数据集划分脚本
● 数据集介绍:无人机场景车辆检测数据集,真实场景高质量图片数据,涉及场景丰富,比如无人机场景城市道路行驶车辆图片、无人机场景城市道边停车车辆图片、无人机场景停车场车辆图片、无人机场景小区车辆图片、无人机场景车辆遮挡、车辆严重遮挡图片数据等,数据集类别划分为轿车 car、货车 van 和巴士 bus 三个类别,;
● 适用实际项目应用:无人机场景下车辆检测项目,以及作为无人机场景通用车辆检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
YOLO11目标检测算法训练+TensorRT部署实战-附项目源码+完整流程教程+一键执行脚本+效果展示-优质项目实战
项目名称:YOLO11目标检测算法训练+TensorRT部署实战_附项目源码+完整流程教程+一键执行脚本+效果展示_优质项目实战
项目介绍:对YOLO11基于coco_minitrain_10k数据集进行训练,并使用py TensorRT进行加速推理,包括导onnx和onnx2trt转换脚本,以及完整的项目流程教程,参见README
目标检测-雨雪天气车辆车牌检测数据集-5000张图-+对应VOC-COCO-YOLO三种格式标签+数据集划分脚本
● 数据集介绍:雨雪天气车辆车牌检测数据集,真实场景高质量图片数据,涉及场景丰富,比如城市道路雨雪天气车辆车牌、户外停车雨雪天气车辆车牌、雨雪天气新能源车辆车牌、夜间雨雪天气车辆车牌、车牌遮挡、车牌严重遮挡数据等,类别划分为 "plate" 一个类别;
● 适用实际项目应用:交通道路监控场景下雨雪天气车辆车牌检测项目,以及作为监控场景通用车辆车牌检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标检测-雨雪天气车辆车牌检测数据集-10000张图-+对应VOC-COCO-YOLO三种格式标签+数据集划分脚本
● 数据集介绍:雨雪天气车辆车牌检测数据集,真实场景高质量图片数据,涉及场景丰富,比如城市道路雨雪天气车辆车牌、户外停车雨雪天气车辆车牌、雨雪天气新能源车辆车牌、夜间雨雪天气车辆车牌、车牌遮挡、车牌严重遮挡数据等,类别划分为 "plate" 一个类别;
● 适用实际项目应用:交通道路监控场景下雨雪天气车辆车牌检测项目,以及作为监控场景通用车辆车牌检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标检测-雨雪天气车辆车牌检测数据集-1000张图-+对应VOC-COCO-YOLO三种格式标签+数据集划分脚本
● 数据集介绍:雨雪天气车辆车牌检测数据集,真实场景高质量图片数据,涉及场景丰富,比如城市道路雨雪天气车辆车牌、户外停车雨雪天气车辆车牌、雨雪天气新能源车辆车牌、夜间雨雪天气车辆车牌、车牌遮挡、车牌严重遮挡数据等,类别划分为 "plate" 一个类别;
● 适用实际项目应用:交通道路监控场景下雨雪天气车辆车牌检测项目,以及作为监控场景通用车辆车牌检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标检测-新能源车车牌检测数据集-10000张图-+对应VOC-COCO-YOLO三种格式标签+数据集划分脚本
● 数据集介绍:新能源车车牌检测数据集,真实场景高质量图片数据,涉及场景丰富,比如城市道路新能源车辆车牌、车库新能源车辆车牌、雨雪天气新能源车辆车牌、夜间新能源车辆车牌、车牌遮挡、车牌严重遮挡数据等,且类别丰富,划分为 "plate" 一个类别;
● 适用实际项目应用:交通道路监控场景下新能源车辆车牌检测项目,以及作为监控场景通用车辆车牌检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标检测-新能源车车牌检测数据集-5000张图-+对应VOC-COCO-YOLO三种格式标签+数据集划分脚本
● 数据集介绍:新能源车车牌检测数据集,真实场景高质量图片数据,涉及场景丰富,比如城市道路新能源车辆车牌、车库新能源车辆车牌、雨雪天气新能源车辆车牌、夜间新能源车辆车牌、车牌遮挡、车牌严重遮挡数据等,且类别丰富,划分为 "plate" 一个类别;
● 适用实际项目应用:交通道路监控场景下新能源车辆车牌检测项目,以及作为监控场景通用车辆车牌检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标检测-新能源车车牌检测数据集-1000张图-+对应VOC-COCO-YOLO三种格式标签+数据集划分脚本
● 数据集介绍:新能源车车牌检测数据集,真实场景高质量图片数据,涉及场景丰富,比如城市道路新能源车辆车牌、车库新能源车辆车牌、雨雪天气新能源车辆车牌、夜间新能源车辆车牌、车牌遮挡、车牌严重遮挡数据等,且类别丰富,划分为 "plate" 一个类别;
● 适用实际项目应用:交通道路监控场景下新能源车辆车牌检测项目,以及作为监控场景通用车辆车牌检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标检测-蜜蜂检测数据集-1000张图-+对应VOC/COCO/YOLO三种格式标签+YOLO11一键训练脚本
目标检测_蜜蜂检测数据集_1000张图_+对应VOC/COCO/YOLO三种格式标签+YOLO11一键训练脚本
目标检测-高架视角道路车辆检测数据集-600张图-+对应VOC/COCO/YOLO三种格式标签+YOLO11一键训练脚本
● 数据集介绍:高架视角道路车辆检测数据集,真实场景高质量图片数据,涉及场景丰富,比如城市道路车辆、高速道路车辆、农村道路车辆、车辆遮挡、车辆严重遮挡数据等,且类别丰富,划分为 "Vehicle" 一个类别;
● 适用实际项目应用:交通道路监控场景下车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供博主训练结果日志供参考;
注意:由于数据集资源比较大,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式!
目标分割-大脑肿瘤MRI分割数据集-3000张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 数据集介绍: 大脑肿瘤 MRI 分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:大脑肿瘤 MRI 分割项目,以及作为通用医疗分割数据集场景数据的补充;
● 数据集类别:glioma(胶质瘤)、meningioma(脑膜瘤)、pituitary(垂体肿瘤);
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;
目标检测-焊缝缺陷检测数据集-2900张图-+对应COCO/YOLO三种格式标签+YOLO11一键训练脚本
● 目标检测_ 焊缝缺陷检测数据集_2900张图_+对应COCO/YOLO三种格式标签+数据集划分脚本+YOLO11一键训练脚本
● 数据集介绍:焊缝缺陷检测数据集,真实采集高质量焊缝含工业场景缺陷图片数据。数据标注标签包括 Bad Weld 不好的焊缝、Good Weld 好的焊缝、Defect 缺陷焊缝三个缺陷类别;
● 适用实际项目应用:焊缝缺陷检测项目,以及作为通用工业场景表面缺陷检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供博主训练结果日志供参考;
目标检测-番茄叶病虫害检测数据集-750张图-+对应VOC/COCO/YOLO三种格式标签+YOLO11一键训练脚本
● 数据集介绍:番茄叶病虫害检测数据集,真实场景高质量图片数据;
● 适用实际项目应用:番茄叶病虫害检测项目,以及作为农业场景通用病虫害检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考;
目标检测-国际象棋检测数据集-660张图-+对应VOC/COCO/YOLO三种格式标签+YOLO11一键训练脚本
● 数据集介绍:国际象棋检测数据集,真实场景高质量图片数据,涉及 bishop、black-bishop、black-king、black-knight、black-pawn、black-queen、black-rook、white-bishop、white-king、white-knight、white-pawn、white-queen、white-rook 12 个类别;
● 适用实际项目应用:国际象棋检测项目,以及作为象棋类检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供博主训练结果日志供参考;
目标检测-农作物和杂草检测数据集-1300张图-+对应VOC/COCO/YOLO三种格式标签+YOLO11一键训练脚本
● 数据集介绍:农作物和杂草检测数据集,真实场景高质量图片数据,主要涉及田间实拍农作物图片;
● 适用实际项目应用:农业农作物和杂草检测项目,以及作为农业场景通用检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供博主训练结果日志供参考;
目标分割-大脑肿瘤MRI分割数据集-1000张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 数据集介绍: 大脑肿瘤 MRI 分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:大脑肿瘤 MRI 分割项目,以及作为通用医疗分割数据集场景数据的补充;
● 数据集类别:glioma(胶质瘤)、meningioma(脑膜瘤)、pituitary(垂体肿瘤);
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;
目标分割-大脑肿瘤MRI分割数据集-2000张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 数据集介绍: 大脑肿瘤 MRI 分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:大脑肿瘤 MRI 分割项目,以及作为通用医疗分割数据集场景数据的补充;
● 数据集类别:glioma(胶质瘤)、meningioma(脑膜瘤)、pituitary(垂体肿瘤);
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;
目标分类-交通事故场景分类数据集-1000张图+对应分类文件夹整理+YOLO11cls一键训练脚本
● 数据集介绍:交通事故场景分类数据集,真实交通场景高质量图片数据;
● 适用实际项目应用:公共场所监控场景下是否发生交通事故检测项目,以及作为监控场景通用交通检测数据集场景数据的补充;
● 数据集类别:Accident、Non Accident;
● 标注说明:采用文件夹来区分不同的目标类别,标注质量高,可以直接用于如 YOLOCLS 的算法训练;
● 附赠训练示例:提供 YOLO11cls 一键训练脚本,提供博主训练结果日志供参考;
目标检测-无人机检测数据集-1300张图-+对应COCO/YOLO三种格式标签+YOLO11一键训练脚本
● 数据集介绍:无人机检测数据集,真实采集高质量含无人机图片数据,适用于空中飞行无人机的检测。数据标注标签包括 drone 无人机一个类别;
● 适用实际项目应用:无人机检测项目,以及作为通用检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供COCO (json)、YOLO (txt) 两种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供博主训练结果日志供参考;
目标检测-火焰检测数据集-1700张图-+对应COCO/YOLO三种格式标签+YOLO11一键训练脚本
● 数据集介绍:火焰检测数据集,真实采集高质量含火焰、火灾图片数据,适用于火焰、火灾的检测。数据标注标签包括 fire 火焰一个类别;
● 适用实际项目应用:火焰检测项目,以及作为通用灾害检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供COCO (json)、YOLO (txt) 两种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供博主训练结果日志供参考;
目标检测-眼睛瞳孔检测数据集-1900张图-+对应COCO/YOLO三种格式标签+YOLO11一键训练脚本
● 数据集介绍:眼睛瞳孔检测数据集,真实采集高质量人脸眼部图片数据,适用于人脸定位、人脸疾病如白内障等疾病的视觉检测。数据标注标签包括 eyepupil 瞳孔一 个缺陷类别;
● 适用实际项目应用:眼睛瞳孔检测项目,以及作为通用医疗检测数据集场景数据的补充;
● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供COCO (json)、YOLO (txt) 两种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练;
● 附赠训练示例:提供 YOLO11 一键训练脚本,提供博主训练结果日志供参考;
目标分类-地面裂纹分类数据集-40000张图+对应分类文件夹整理+YOLO11cls一键训练脚本
● 数据集介绍:地面裂纹分类数据集,真实场景高质量图片数据;
● 适用实际项目应用:地面裂纹分类项目,以及作为通用场景分类数据集场景数据的补充;
● 数据集类别:Positive、Negative;
● 标注说明:采用文件夹来区分不同的目标类别,标注质量高,可以直接用于如 YOLOCLS 的算法训练;
● 附赠训练示例:提供 YOLO11cls 一键训练脚本,提供博主训练结果日志供参考;
目标分割-行人分割数据集-1000张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 数据集介绍: 行人分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:行人分割项目,以及作为通用分割数据集场景数据的补充;
● 数据集类别:person;
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;
目标分割-行人分割数据集-3000张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 数据集介绍: 行人分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:行人分割项目,以及作为通用分割数据集场景数据的补充;
● 数据集类别:person;
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;
目标分割-行人分割数据集-5600张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 数据集介绍: 行人分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:行人分割项目,以及作为通用分割数据集场景数据的补充;
● 数据集类别:person;
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;
目标分割-航拍水域分割数据集-290张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 数据集介绍:航拍水域分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:无人机航拍场景下水域分割项目,以及作为无人机场景通用分割数据集场景数据的补充;
● 数据集类别:water;
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;
目标分割-足球运动员分割数据集-500张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 数据集介绍:足球运动员分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:拍摄场景下足球运动员分割项目,以及作为通用分割数据集场景数据的补充;
● 数据集类别:player;
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;
目标分割-车辆属性分割数据集-200张图+YOLO格式分割标注+YOLO11seg一键训练脚本
● 据集介绍: 车辆属性分割数据集,真实场景高质量图片数据;
● 适用实际项目应用:车辆属性分割项目,以及作为通用分割数据集场景数据的补充;
● 数据集类别:car、wheel、lights、window;
● 标注说明:采用 YOLO 格式标注分割区域 (class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>),标注质量高,可以直接用于如 YOLOSeg 的算法训练;
● 附赠训练示例:提供 YOLO11Seg 一键训练脚本,提供博主训练结果日志供参考;