
Learning Task-Specific Generalized Convolutions
in the Permutohedral Lattice

Anne S. Wannenwetsch1?[0000−0002−7016−3820],
Martin Kiefel2[0000−0001−9432−5428],

Peter V. Gehler2[0000−0002−5812−4052], Stefan Roth1[0000−0001−9002−9832]

1 TU Darmstadt, Germany 2 Amazon, Germany

Abstract. Dense prediction tasks typically employ encoder-decoder ar-
chitectures, but the prevalent convolutions in the decoder are not image-
adaptive and can lead to boundary artifacts. Different generalized con-
volution operations have been introduced to counteract this. We go be-
yond these by leveraging guidance data to redefine their inherent notion
of proximity. Our proposed network layer builds on the permutohedral
lattice, which performs sparse convolutions in a high-dimensional space
allowing for powerful non-local operations despite small filters. Multiple
features with different characteristics span this permutohedral space. In
contrast to prior work, we learn these features in a task-specific manner
by generalizing the basic permutohedral operations to learnt feature rep-
resentations. As the resulting objective is complex, a carefully designed
framework and learning procedure are introduced, yielding rich feature
embeddings in practice. We demonstrate the general applicability of our
approach in different joint upsampling tasks. When adding our network
layer to state-of-the-art networks for optical flow and semantic segmen-
tation, boundary artifacts are removed and the accuracy is improved.

1 Introduction

Deep learning approaches are the backbone of many state-of-the-art methods
across computer vision [7,36,39]. Convolutional neural networks (CNNs) are par-
ticularly common as they greatly lower the number of parameters compared to
fully-connected networks and thus scale to practically relevant image sizes. While
early CNNs employed large filters [28], it is now common to use small kernels
stacked into deep networks [16,35]. Chaining several smaller filters requires fewer
parameters for the same receptive field of a single large filter, and leads to more
discriminative features by virtue of having more non-linearities [35].

While convolutions build a fundamental block of deep learning, they are not
without drawbacks. First, they are not image-adaptive, i.e. content boundaries
in a feature map are not respected but smoothed over. This is especially dis-
advantageous for dense prediction tasks, e.g . semantic segmentation or optical
flow, leading to accuracy loss at boundaries [14,46]. Moreover, convolutions have

? This project was mainly done during an internship at Amazon, Germany.

To appear in Proceedings of the 41st German Conference on Pattern Recognition (GCPR), Dort-
mund, Germany, 2019. The final publication will be available through Springer.

ar
X

iv
:1

90
9.

03
67

7v
1

 [
cs

.C
V

]
 9

 S
ep

 2
01

9

2 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

a limited and predefined receptive field, which connects spatially close regions
but cannot leverage similar, but more distant image structures. Here, a new defi-
nition of pixel proximity is needed that goes beyond two-dimensional (2D) spatial
distance. For instance, image values themselves or abstract properties such as
object classes could be used to define similarity in a more general setting.

Several methods have been proposed to counteract the named disadvantages.
Sampling-based approaches [19,33] rearrange the image content but remain re-
stricted to the 2D concept of proximity. Location specific networks [22,46] predict
pixelwise filter kernels, but require many additional parameters. Other methods
[8,40] determine neighboring pixels in an image-adaptive manner. However, the
convolutional structure is fixed and only the position of neighbors is adjustable.

Image-adaptive filters, e.g . [15,41], have been used in traditional computer
vision for years. The bilateral filter [41] adapts a Gaussian kernel according to the
spatial distance and color difference of neighboring pixels. In [20,24], this concept
is leveraged to construct bilateral convolution layers (BCLs) based on the per-
mutohedral lattice [1] – a fast approximation of the bilateral filter. Filtering cor-
responds to a sparse convolution in a high-dimensional space, which is spanned
by different features, e.g . spatial location and color. Jampani et al . [20,24] ex-
tend the Gaussian kernel to a general, image-adaptive convolution and learn the
kernels from data. However, the features constituting the lattice space remain
fixed. Feature parameters are not adjustable during training, which complicates
integration into end-to-end learning. More importantly, relying on predefined
features without further processing omits a possible source of improvements.

To counteract this disadvantage of BCLs, we present the semantic lattice
layer. We rely on the permutohedral lattice as a backbone and show how to
generalize its operations w.r.t. features with learnable parameters. The resulting
computations are involved and may lead to practical challenges. We hence pro-
pose a specific setting in which basic features – as used in [20,24] – are processed
by a CNN. This greatly simplifies the optimization since it allows to combine and
especially refine features that are known to be beneficial for image-adaptive fil-
tering. We further present various measures to avoid difficulties during learning.
For instance, as the sparsity of the semantic lattice may avoid propagation of in-
formation if pixels are too distant, we restrict the output range of the embedded
features. This rather simple measure has a large effect in practice.

Our setup enables us to learn meaningful feature embeddings from data.
It allows to integrate feature parameters into training and effectively leverages
guidance data to connect pixels due to their similar characteristics. As such, the
semantic lattice is able to perform non-local operations while keeping the filter
kernels and consequently the number of learnt parameters small and manageable.

We show the benefits of the semantic lattice in different areas for image-
adaptive upsampling. For the task of color upsampling, the semantic lattice
outperforms previous approaches by a large margin. We further replace bilinear
upsampling in state-of-the-art networks for optical flow and semantic segmen-
tation. Here, the semantic lattice leads to better aligned and crisper content
boundaries and also improves the accuracy, especially at discontinuities.

Learning Task-Specific Generalized Convolutions in the Perm. Lattice 3

2 Related Work

Generalized Convolutions. We begin by reviewing work that generalizes con-
volution operations. Jaderberg et al . [19] introduce Spatial Transformers (STs),
which transform feature maps depending on the data itself. Similar to warped
convolutions [17], STs aim for invariance to certain transformations, e.g . rota-
tion or scaling. [29] applies STs to allow for irregular patches in dense prediction
tasks. In [33], saliency-based sampling emphasizes regions of high interest. These
methods rearrange data in 2D space. In contrast, we can leverage additional fea-
ture dimensions to redefine the concept of pixel proximity.

Filter-weight networks [22] generate location-specific filters dependent on the
input image. In [23], adaptive weights incorporate side information about the
scene context. However, adaptive filters introduce many additional parameters
in comparison to location-invariant networks and remain restricted to local trans-
formations due to a fixed receptive field. Wu et al . [46] apply location-specific
convolutions not only to the position itself but to several sampled neighboring
regions, which extends their receptive field but requires additional computations.

Dilated convolutions use a fixed spacing between considered pixels to extend
the spatial resolution [6,47]. It is possible to learn offsets for the input locations of
each filter [21] or have them depend on the input and spatial location [8]. When
using mixtures of Gaussians as filters, size and location of the receptive fields
are learnable [40]. Structure-aware convolutions [5] use univariate functions as
filters and are also applicable to non-Euclidean data. We do not learn individual
neighborhoods for all filters but convolutions are instead performed consistently
in a learnt feature space. Moreover, our convolution structure is not fixed; the
number of neighbors is flexible and homogenous areas can be compressed.

Permutohedral Lattice. Adams et al . [1] propose the permutohedral lattice
as a fast method for high-dimensional Gaussian filtering. It found widespread
application, especially for fast inference in dense Conditional Random Fields
(CRFs) [26,32,48] and upsampling or densification of data [10,34]. In contrast
to our work, these approaches use fixed Gaussian filters and predefined features.
[27] extends the fast inference method of [26] to learn parameters of dense CRFs,
but the setup is restricted to Gaussian filters and customized to its application.

In [20,24], the high-dimensional filtering in permutohedral space is gener-
alized by learnable convolution parameters. The proposed BCLs are beneficial
in neural networks as they allow to redefine proximity of pixels w.r.t. different
characteristics [12,20,30]. Moreover, BCLs can inherently cope with sparse data
[24], e.g . in 3D point cloud processing [38]. Again, all methods rely on predefined
features and thus restrict the flexibility of the generalized convolutions. We will
show that a general setup with learnt features leads to better results in practice.

Another line of research aims for further speed-up of the permutohedral lat-
tice. For instance, [9] proposes to encode its operations in a deep neural net.

Learnt Representations. Our embedding network aims to encode guidance
data as discriminatively as possible for the task at hand. As such, our work is
related to general embedding or metric learning; see [37,44] for an overview.

4 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

Image-Adaptive Filtering. We leverage additional properties for our gener-
alized convolutions, which closely relates our approach to image-adaptive filter-
ing methods such as bilateral filtering [41], non-local means [3], and guided image
filtering [15]. All of these filters have been included into deep networks, e.g . for
semantic segmentation [12,14], image processing [45], or video classification [42].

Only few approaches aim to learn guidance features for the filtering step
in a general context. Harley et al . [14] propose segmentation-aware convolu-
tions, which leverage image-adaptive masks from an embedding network. Object
class labels are required for pre-training and large filter kernels increase the risk
of overfitting. Deep joint image filtering (DJIF) [31] uses two individual net-
works to preprocess guidance and data features and subsequently merges the
two branches for joint filtering. However, explicit knowledge about the relation
between guidance and target data is not leveraged. Gharbi et al . [13] reproduce
image enhancement operators with locally-affine models and upsample the low-
resolution outputs guided by a learnt feature channel. Here, the offline learning of
the models puts strong restrictions on the approximated operators. Deep guided
filters [45] allow to learn a guidance image but restrict its dimensionality to a
one-dimensional signal per output channel.

In contrast to previous work, the semantic lattice is applicable to a large
variety of tasks and puts no restrictions on the guidance data. Moreover, the
rich feature representations allow us to keep the applied filter kernels small.

3 The Semantic Lattice

To allow for the non-local combination of data, we build on the permutohedral
lattice [1] to redefine the notion of proximity between the pixels of an image.
The permutohedral lattice assumes that each input point is characterized by two
properties – features and data. The feature value f ∈ Rd indicates the location
of the respective pixel in the d-dimensional permutohedral space, while the data
value v ∈ Rc describes the information stored at this location. In a first step,
the data is projected into the lattice grid using the features to determine its po-
sition. Convolutions can then be performed in permutohedral space, considering
a neighborhood defined by the feature dimensions. For instance, color values can
be considered to connect visually similar areas and respect object boundaries
[20,24]. This is in contrast to regular convolutions where the spatial location is
used as the only feature to determine neighboring pixels. Finally, the convolved
output is extracted at certain feature positions, which can but do not have to
coincide with the input locations depending on the task at hand.

In the following, we introduce the permutohedral lattice and its properties
more formally. We then extend the work in [20,24] to eliminate the usage of fixed,
hand-crafted features. In particular, we show how to learn an appropriate feature
space based on spatial positions as well as guidance data. As this approach allows
to leverage semantically meaningful properties that go beyond the concept of
predefined features, we refer to our proposed setup as the semantic lattice.

Learning Task-Specific Generalized Convolutions in the Perm. Lattice 5

v2

v1vL

b2

b1

(a) Splat.

vL~

vL1 vL2

vL3

vL4
w4

w3

w2w1

(b) Convolve.

vLo1

~

vLo3

vLo2

~

~
bo1
bo3
bo2

(c) Slice.

Fig. 1. Basic operations in the permutohedral lattice.

3.1 Permutohedral Lattice

Following [1], the permutohedral lattice is defined as the projection of the regular
grid Zd+1 onto the hyperplane H : h · 1 = 0 ⊆ Rd+1. The projected grid points
thus represent the corners of permutohedral simplices, which split the hyperplane
H into uniform cells. We refer to [1] for further details of the lattice structure.

The operation to read data into the lattice grid is denoted as splatting, see
Fig. 1a. The feature vector fi is used to place an input point i = (fi,vi) into the
permutohedral lattice. Then, the data value is splat onto the enclosing lattice
points according to its barycentric coordinates. The data value of a lattice point
L is given as

vL =
∑

i∈I(L)

bi · vi, (1)

where bi denote the barycentric coordinates of input points I(L) splatting on L.
The convolution step is subsequently performed on the permutohedral grid

points considering corners in a neighborhood N (L), c.f . Fig. 1b. If a neighboring
corner was not set during splatting, its value is assumed to be zero. Using a kernel
W = (w1, . . . , wN), the convolution results in the updated lattice data

ṽL =
∑

Ln∈N (L)

wn · vLn
. (2)

Fig. 1c illustrates the final slicing operation, which interpolates the data from
lattice points to an output pixel o. The value at pixel position fo is obtained as

ṽo =

d+1∑
k=1

bko · ṽLk
o
, (3)

with enclosing simplex corners Lk
o and barycentric coordinates bko , 1 ≤ k ≤ d+1.

In [20,24], the permuthedral lattice is integrated into deep learning by pro-
viding partial derivatives of the permutohedral operations w.r.t. the input data
v and the kernel W. As such, the original Gaussian kernel [1] is transformed
into a general convolution with a flexible filter W learnt from data. As the filter
operation is performed in lattice space, the convolution respects the notion of
proximity introduced by the features f that span the permutohedral lattice.

6 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

3.2 Generalized Features in the Semantic Lattice

To define the permutohedral space, [20,24] resort to predefined features, which
are usually taken as f = (x, y, r, g, b). Here, x and y describe the spatial x- and
y-coordinates of a pixel, which are concatenated with corresponding RGB values.

Our semantic lattice instead aims to learn feature embeddings from data to
leverage the full capacity of the lattice. To that end, we introduce generalized
input features f(i;θI) that depend on each pixel i as well as a global set of
parameters θI . The splatting operation in Eq. (1) then generalizes to

vL(θI) =
∑

i∈I(L;θI)

bi(θI) · vi, (4)

since the splatting points as well as the corresponding barycentric coordinates
depend on the feature values and thus also on θI . Due to the fixed lattice struc-
ture, the set of neighbors for the convolution remains unchanged. However, the
data value vL at each lattice point depends on the inputs that splatted to this
exact corner such that we rewrite the convolution in Eq. (2) as

ṽL(θI) =
∑

Ln∈N (L)

wn · vLn
(θI). (5)

Finally, the set of lattice points surrounding an output pixel o and its barycentric
coordinates are again dependent on its features f(o,θO), which are parametrized
by a set θO. This definition results in a generalized slicing operation given as

ṽo(θI ,θO) =

d+1∑
k=1

bko(θO) · ṽLk
o(θO)(θI). (6)

As operations in the lattice require specific computations, common automatic
differentiation packages cannot be easily applied. Instead, we rely on customized
functions for the above generalized operations as well as their parameter gradi-
ents. The derivatives then allow us to apply gradient based optimizers to learn
task-specific feature representations f(i;θI) and f(o;θO) from data.

However, the nested occurance of the parameter sets θI and θO already
suggests that learning these generalized features may not be straightforward.
Reconsidering the generalized operations in Eqs. (4) – (6), we observe that in-
formation between input and output pixels only propagates via a set of lattice
corners defined by the neighborhood size of the convolution step. It is thus es-
sential that input and output feature positions are sufficiently close in lattice
space when starting the learning process. Otherwise, the loss gradient does not
affect the input feature parameters θI and no learning occurs.

To avoid this situation, we propose a specific framework as illustrated in Fig. 2
for the sample task of color upsampling. For given input and output points p, we
first generate several basic features fB(p) ∈ Rd′

, i.e. hand-crafted features that
we assume to be helpful for the task of interest. In the example case, the spatial
location of each pixel and the corresponding grayscale image are chosen as basic

Learning Task-Specific Generalized Convolutions in the Perm. Lattice 7

generalized
convolution Eq (5)

generalized slicing

Eq. (6)
output

 data vo
basic output

features fB(o)

data
input vi

basic input
 features fB(i)

generalized splatting Eq. (4)

shared

Φ(⋅;θ)

Φ(⋅;θ) embedded
input

features

embedded
output

features

Fig. 2. Visualization of generalized feature learning in the semantic lattice; illustrated
for the task of guided color upsampling.

features. Here, the additional grayscale information needs to be available for the
input as well as output pixels. We denote it more generally as guidance data
in the following. Then, a parametric function Φ : Rd′ → Rd is defined, which
takes the basic features fB as an input and returns a learnt feature embedding
Φ(fB(p);θ) in Rd. The parameter set θ is shared across input and output points,
i.e. θ = θI = θO, to ensure the necessary consistency of the feature embedding.
We propose to use a multi-layer CNN for the embedding function Φ and refer
to this network in the following as feature or embedding network. The parameter
set θ thus corresponds to the network weights. Embedded features as well as
data inputs vi are then used for the generalized operations in Eqs. (4) – (6).

As there are no restriction on the basic features, the semantic lattice is able
to learn different kinds of non-local operations. Due to the characteristics of
the permutohedral lattice, input and output positions are rearranged according
to the learnt features and spatially far pixels are connected if they share the
same characteristics. With this redefinition of proximity, the number of weight
parameters remains limited while the semantic lattice yet operates globally.

4 Training the Semantic Lattice

The training and setup of the semantic lattice requires careful consideration. We
detail this in the following and provide an experimental analysis in Sec. 5.2.

4.1 Training Procedure

Feature Scaling. As the size of the permutohedral lattice cells is fixed, a
scaling factor applied to the individual features determines the importance of
the different dimensions as well as the number of pixels that fall into one lattice
cell. These scaling factors thus constitute important hyperparameters. Following
[20,24], we determine factors for our basic features via grid search. While with
the semantic lattice it is possible to refine these factors in end-to-end training
through backpropagation, we found little benefit in our experiments. Hence, we
use the scaled features from the grid search as inputs to our embedding network.

Data Centering. If predefined features are used to map to the lattice space,
the output is largely invariant to a global translation of the features. In contrast,

8 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

we found feature network training to be more stable with zero mean input. We
thus subtract the dataset mean from the basic features before feature scaling.

Explicit Spatial Features. As the embedding network combines basic fea-
tures with various scale factors, we find that a random initialization may lead to
a poor initial accuracy. While the feature network is able to recover a reasonable
embedding starting from a random initialization, we observe long training times
in practice as well as occasional convergence to poor local minima (inferior to
the scaled basic features themselves). We find that this is mainly caused by the
absence of reliable spatial coordinate features in the initial embedding network.
Hence, we do not input the spatial coordinates into the embedding network, and
instead explicitly concatenate the scaled spatial features and the learnt feature
embedding to jointly define the lattice space for the subsequent convolutions.

Normalization Weights. The number of points per lattice cell can vary con-
siderably, resulting in differing ranges of absolute data values at corner points
(Eq. 4). Moreover, the flexible structure of the lattice results in a variable number
of non-zero neighbors for the convolution in Eq. (5). For this reason, computa-
tions in permutohedral space require a normalization step on the slice result in
Eq. (6). We divide by a normalization value, which is obtained by performing
all lattice operations with a placeholder input with the same features as the reg-
ular input and vi = 1. This implies that an all-one input remains unchanged by
the lattice operations. Note that this normalization becomes invalid as convolu-
tion weights turn negative. [20,24] resolve this by introducing a separate set of
convolution weights for the normalization. They rely on a fixed Gaussian filter,
which reduces the flexibility. In contrast, we explicitly learn separate convolution
weights for the normalization step and constrain them to be non-negative.

Learning Rates. If the feature network and permutohedral kernels are learnt
simultaneously, individual learning rates are applied to both parameter sets.

4.2 Architecture

We use a CNN with 3 × 3 filters and leakyReLU activations as our feature
embedding network. The non-linearities are omitted after the last convolution
to allow for positive and negative features.1 We experimented with ResNet-
like feature networks [16], but observed little benefit. In contrast, we found it
essential to add a batch normalization layer [18] at the end of the embedding
network, c.f . Sec. 5.2. This can be understood as follows: Even in our carefully
designed semantic lattice, it is possible that no data is splat to the lattice cells
surrounding a specific output location. In such a case, the slice operation returns
zero and the corresponding gradient with respect to the output location turns
zero as well. Without further gradient signals from such pixels, learning keeps
pushing more pixels into this disadvantageous state and the accuracy starts to
degrade. Consequently, it is necessary to restrict the output range of the feature
network, which batch normalization admits. While other normalization methods

1 Details of the network architecture are provided in the supplemental material.

Learning Task-Specific Generalized Convolutions in the Perm. Lattice 9

Table 1. PSNR for color upsampling on the Pascal VOC 2012 Segmentation test set.

PSNR [dB]

Semantic lattice (scaled basic features) 36.55
Semantic lattice (learnt kernels) 36.62
Semantic lattice (learnt embedding) 36.81
Semantic lattice (both learnt) 36.83

PSNR [dB]

Nearest neighbors 22.17
Bicubic upsampling 23.45
DGF [45] 35.17
DJIF [31] 23.99

are possible, e.g . a simple min-max normalization, they show no clear benefit
over batch normalization, which is commonly available in deep learning libraries.

In permutohedral space, we use a single kernel per input channel with a
neighborhood of size one, c.f . supplemental material. For upsampling tasks as
in Sec. 5.1, transitions of the sparse inputs between lattice cells may cause sudden
changes of training loss. For this reason, we apply a nearest neighbor upsam-
pling to the low-resolution guidance and input data before feeding them into the
feature network and lattice, respectively. The spatial features are adapted to the
upsampled input, which spreads the data more evenly over the lattice and leads
to more reliable gradients w.r.t. the features.

5 Experiments

5.1 Color Upsampling

Guided upsampling is a common application of image-adaptive filters [2,25,31,45].
Here, guidance data is available at a higher resolution than the data of interest.
This is particularly interesting if sensor data is available at different resolutions.

We evaluate our approach on the the task of joint color upsampling in which a
grayscale image guides the upsamling of a low-resolution color image. Following
[20], we use images of the Pascal VOC Segmentation splits [11] for training,
validation, and test from which we removed grayscale images for fair comparison.
Bilinear interpolation is used to downsample color and grayscale images by 4×.

The semantic lattice is applied to learn the offset between grayscale images
and the RGB data. We use spatial coordinates and grayscale values as basic
features. The semantic lattice is trained for 100 epochs on random crops of
size 200 × 272 with learning rates of 0.001 and 0.01 for the feature network
and permutohedral kernels, respectively. For comparison, we also train the deep
guided filter (DGF) [45] in the same setting for 150 epochs using their procedure
for image processing tasks. Again, the DGF predicts the offset between RGB and
grayscale images as this slightly improves the results. We also compare with Deep
Joint Image Filtering (DJIF) [31] by applying their residual network trained for
the task of depth upsampling to predict color offsets.

Table 1 summarizes color upsampling results on Pascal VOC Segmentation
test. When learning the permutohedral kernels (learnt kernels), we observe only
a small benefit in comparison to the usage of a Gaussian filter (scaled basic

10 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

features). In contrast, our learnt feature embedding (learnt embedding) leads
to a significant improvement, highlighting the importance of using task-specific
features. Combining both leads to another (minor) gain. Overall, we outperform
the baselines of nearest neighbor and bicubic upsampling as well as related work
[31,45] by a large margin. Please see supplemental material for visualizations.

5.2 Validation of Architectural Choices

We now compare different settings for feature learning to validate our proposed
lattice setup. Table 2 summarizes results obtained with fixed Gaussian kernels.
First, we train an embedding network without batch normalization to evaluate
the importance of restricting its output range. We observe a significant drop in
PSNR with a result only slightly better than that with scaled basic features. This
is due to the fact that input and output locations do not necessarily coincide,
which may lead to empty cells without gradients, c.f . Sec. 4.2. If the output
range of the network is restricted, the number of such pixels can be kept small.

Next, we validate feeding our embedding network with guidance data and
concatenating its output with spatial features. We first learn the scale factor of x-
and y-coordinates jointly with the embedding. As this yields a negligible improve-
ment over our baseline, we generally do not refine the scale factors. However, note
that bigger benefits may be obtained from scale refinement if the initial scale fac-
tors are estimated only coarsely. In a second experiment, we apply the embedding

Table 2. Validation of architectural choices
for color upsampling on Pascal VOC test.

PSNR [dB]

Baseline (learnt embedding) 36.81
W/o batch normalization layer 36.61
Learnt spatial scale factor 36.82
Spatial features embedded 36.55

Baseline (learnt kernels) 36.62
Gaussian normalization 36.58

network to all features, i.e. spatial co-
ordinates and grayscale values. The
network learns reasonable features
from random initialization, but the
PSNR is clearly lower than our base-
line despite training 9× longer.

Finally, we evaluate our new nor-
malization approach and learn kernels
using scaled basic features. Applying
a fixed Gaussian filter rather than a
flexible, positive kernel for normaliza-
tion reduces the PSNR by 0.04dB.

5.3 Dense Prediction Tasks

We next apply our semantic lattice in deep networks for challenging dense pre-
diction tasks, where networks typically operate on downsampled images and use
bilinear upsampling as a last step, e.g . [7,39].

Optical Flow. We first consider optical flow for which PWC-Net [39] performs
competitively on different benchmarks, e.g . [4]. However, the calculated flow
looks blurry and boundary details are oversmoothed, see Fig. 3. We attribute
this to the non-adaptive upsampling that enlarges the estimated flow by ∼ 4×.

To obtain sharper and more detailed flow, we replace the bilinear upsampling
with a single convolution in the semantic lattice. As basis, we use the so-called

Learning Task-Specific Generalized Convolutions in the Perm. Lattice 11

(a) Ground truth flow (b) RGB guidance image (c) Learnt feature embedding

(d) Output PWC-Net [39] (e) Output DGF [45] (f) Output semantic lattice

Fig. 3. Flow fields and corresponding guidance data for a Sintel sequence.

Table 3. Average-end-point error (AEE) and boundary AEE (bAEE) on our Sintel test
split (ours) and the official Sintel test set (off.). Semantic lattice abbreviated to SL.

clean (ours) final (ours) clean (off.) final (off.)

AEE bAEE AEE bAEE AEE AEE

SL (scaled basic features) 1.27 7.84 1.66 8.65 – –
SL (learnt embedding) 1.26 7.50 1.66 8.61 – –
SL (both learnt) 1.25 7.49 1.65 8.56 3.84 4.89

PWC-Net [39] 1.30 8.52 1.67 8.98 3.90 4.90
DGF [45] 1.29 8.31 1.67 8.91 – –

PWC-Net ROB model trained on a variety of datasets. For fair comparison, we
do not backpropagate into the network itself but only update the parameters
of the semantic lattice, since bilinear upsampling cannot benefit from learning.
Spatial coordinates and color values of the first image are leveraged as basic fea-
tures. The high-resolution guidance image is equally used for input and output
features. Our setup is trained on the Sintel dataset [4], which we split randomly
into 862 training, 80 validation, and 99 test images. We use the average end-
point error (AEE) as loss function and train all configurations for 100 epochs
on random 281× 512 crops. Learning rates are set to 1e− 3 and 1e− 7 for em-
bedding parameters and permutohedral kernels, respectively. We again compare
our approach to DGF [45], which we trained for 500 epochs using their setup for
computer vision tasks and hyperparameters tuned on validation.

Table 3 shows results on our own test split of Sintel clean and final as well
as on the official test images of the benchmark. Our proposed semantic lattice
layer leads to a moderate AEE improvement on both sets. This is to be expected
as our experimental setup can only refine the flow estimates. However, sharper
flow boundaries are clearly visible when considering the results in Fig. 3. As the
AEE is known to be insensitive towards boundary accuracy, we also evaluate
a boundary average end-point error (bAEE). It focuses on accuracy close to
motion discontinuities, which are determined from ground truth flow by applying
a threshold to the flow gradient norm, c.f . [43]. As the varying motion ranges

12 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

require different thresholds [4,43], we follow Weinzaepfel et al . [43] and generate
multiple masks using values in {1, 3, 7, 10}. These masks are subsequently dilated
with a structuring element of size 3. We finally calculate the bAEE by evaluating
flow on boundary regions only and averaging over the different boundary masks.
Our proposed approach shows a clear benefit for boundary regions, improving
the bAEE much more significantly than DGF [45] on Sintel clean and final.

Semantic Segmentation. We finally consider the task of semantic segmenta-
tion and replace the bilinear upsampling of the recent DeepLabv3+ [7] with our
semantic lattice. Again, we only update parameters of the semantic lattice and
keep the remaining network fixed to an XCeption65 model trained on COCO
and Pascal VOC augmented, c.f . [7]. Basic features and the setup of our lattice
layer remain the same as for optical flow. We train the semantic lattice with
random crops of size 200 × 272 on the training set of Pascal VOC 2012 [11],
which we further split into training and validation. The embedding network is
trained for 25 epochs with a learning rate of 1e− 3, which we reduce by 10× for
the remaining 75 epochs. The learning rate for permutohedral kernels is fixed to
1e− 8. DGF is trained as for optical flow with hyperparameters used in [45].

While the semantic lattice without learnt embedding performs slightly worse
than the original implementation, the full semantic lattice and DGF outperform

Table 4. Mean intersection over union (mIoU) for
semantic segmentation on our Pascal VOC 2012
test set.

mIoU

Semantic lattice (scaled basic features) 82.17%
Semantic lattice (learnt embedding) 82.24%
Semantic lattice (both learnt) 82.25%

DeepLabv3+ [7] 82.20%
DGF [45] 82.26%

DeepLabv3+. Table 4 summa-
rizes results on Pascal VOC
2012 validation; see supplemen-
tal for visualizations. The over-
all improvement is rather small,
which we attribute mainly to
DeepLabv3+ being highly engi-
neered, with particular focus on
the decoder (unlike the previ-
ous DeepLabv3). Nevertheless,
image-adaptive filters may ben-
efit further from jointly train-
ing with the entire network.

6 Conclusion

We introduced the semantic lattice layer, a task-specific, generalized convolu-
tion. Our approach is built on the permutohedral lattice that rearranges input
data according to different features and thus performs non-local operations with
small filter kernels. First, we generalized the operations in permutohedral space
to feature representations that can be learnt from data. We then showed how
rich feature embeddings can be learnt in practice and validated the proposed
architecture. When applying the semantic lattice to color upsampling, learn-
ing task-specific features showed a clear benefit. Adding the semantic lattice to
decoders in deep neural networks for optical flow and semantic segmentation
allowed to reduce boundary artifacts and improved the accuracy for both tasks.

Learning Task-Specific Generalized Convolutions in the Perm. Lattice 13

References

1. Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the per-
mutohedral lattice. Comput. Graph. Forum 29(2) (2010) 2, 3, 4, 5

2. Barron, J.T., Poole, B.: The fast bilateral solver. In: ECCV (2016) 9
3. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In:

CVPR (2005) 4
4. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie

for optical flow evaluation. In: ECCV (2012) 10, 11, 12, 17
5. Chang, J., Gu, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Structure-aware con-

volutional neural network. In: NeurIPS*2018 3
6. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image

segmentation with deep convolutional nets and fully connected CRFs. In: ICLR
(2015) 3

7. Chen, L., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: ECCV (2018)
1, 10, 12, 19

8. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: ICCV (2017) 2, 3

9. Dai, L., Tang, L., Xie, Y., Tang, J.: Designing by training: Acceleration neural
network for fast high-dimensional convolution. In: NeurIPS*2018 3

10. Dolson, J., Baek, J., Plagemann, C., Thrun, S.: Upsampling range data in dynamic
environments. In: CVPR (2010) 3

11. Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, C.K.I., Winn, J., Zisser-
man, A.: The PASCAL visual object classes challenge: A retrospective. Int. J.
Comput. Vision 111(1), 98–136 (2015) 9, 12, 17

12. Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.: Superpixel convolu-
tional networks using bilateral inceptions. In: ECCV (2016) 3, 4

13. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral
learning for real-time image enhancement. SIGGRAPH (2017) 4

14. Harley, A.W., Derpanis, K.G., Kokkinos, I.: Segmentation-aware convolutional net-
works using local attention masks. In: ICCV (2017) 1, 4

15. He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV (2010) 2, 4
16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2017) 1, 8
17. Henriques, J.F., Vedaldi, A.: Warped convolutions: Efficient invariance to spatial

transformations. In: ICML (2017) 3
18. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In: ICML (2015) 8
19. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer

networks. In: NIPS*2015 2, 3
20. Jampani, V., Kiefel, M., Gehler, P.V.: Learning sparse high dimensional filters:

Image filtering, dense CRFs and bilateral neural networks. In: CVPR (2016) 2, 3,
4, 5, 6, 7, 8, 9

21. Jeon, Y., Kim, J.: Active convolution: Learning the shape of convolution for image
classification. In: CVPR (2017) 3

22. Jia, X., Brabandere, B.D., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In:
NIPS*2016 2, 3

23. Kang, D., Dhar, D., Chan, A.B.: Incorporating side information by adaptive con-
volution. In: NIPS*2017 3

14 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

24. Kiefel, M., Jampani, V., Gehler, P.V.: Permutohedral lattice CNNs. In: ICLR
Workshop Track (2016) 2, 3, 4, 5, 6, 7, 8

25. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling.
ACM T. Graphics 26(3) (2007) 9

26. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaus-
sian edge potentials. In: NIPS*2011 3

27. Krähenbühl, P., Koltun, V.: Parameter learning and convergent inference for dense
random fields. In: ICML (2013) 3

28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS*2012 1

29. Li, J., Chen, Y., Cai, L., Davidson, I., Ji, S.: Dense transformer networks.
arXiv:1705.08881 [cs.CV] (2017) 3

30. Li, S., Seybold, B., Vorobyov, A., Lei, X., Kuo, C.J.: Unsupervised video object
segmentation with motion-based bilateral networks. In: ECCV (2018) 3

31. Li, Y., Huang, J.B., Ahuja, N., Yang, M.H.: Joint image filtering with deep con-
volutional networks. In: IEEE T. Pattern Anal. Mach. Intell. (2019) 4, 9, 10, 17

32. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast
based filtering for salient region detection. In: CVPR (2012) 3

33. Recasens, A., Kellnhofer, P., Stent, S., Matusik, W., Torralba, A.: Learning to
zoom: A saliency-based sampling layer for neural networks. In: ECCV (2018) 2, 3

34. Russell, C., Yu, R., Agapito, L.: Video pop-up: Monocular 3d reconstruction of
dynamic scenes. In: ECCV (2014) 3

35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015) 1

36. Singh, B., Najibi, M., Davis, L.S.: Sniper: Efficient multi-scale training. In:
NeurIPS*2018 1

37. Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: CVPR (2016) 3

38. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.:
Splatnet: Sparse lattice networks for point cloud processing. In: CVPR (2018) 3

39. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using
pyramid, warping, and cost volume. In: CVPR (2018) 1, 10, 11, 17, 18

40. Tabernik, D., Kristan, M., Leonardis, A.: Spatially-adaptive filter units for deep
neural networks. In: CVPR (2018) 2, 3

41. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV
(1998) 2, 4

42. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR
(2018) 4

43. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Learning to detect motion
boundaries. In: CVPR (2015) 11, 12

44. Wu, C.Y., Manmatha, R., Smola, A.J., Krähenbühl, P.: Sampling matters in deep
embedding learning. In: ICCV (2017) 3

45. Wu, H., Zheng, S., Zhang, J., Huang, K.: Fast end-to-end trainable guided filter.
In: CVPR (2018) 4, 9, 10, 11, 12, 17, 18

46. Wu, J., Li, D., Yang, Y., Bajaj, C., Ji, X.: Dynamic filtering with large sampling
field for convnets. In: ECCV (2018) 1, 2, 3

47. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:
ICLR (2016) 3

48. Zhang, Z., Fidler, S., Urtasun, R.: Instance-level segmentation for autonomous
driving with deep densely connected MRFs. In: CVPR (2016) 3

Learning Task-Specific Generalized Convolutions
in the Permutohedral Lattice

– Supplemental Material –

Anne S. Wannenwetsch1?[0000−0002−7016−3820],
Martin Kiefel2[0000−0001−9432−5428],

Peter V. Gehler2[0000−0002−5812−4052], Stefan Roth1[0000−0001−9002−9832]

1 TU Darmstadt, Germany 2 Amazon, Germany

A Implementation Details

We implement forward and backward passes of our semantic lattice layer in C++
and CUDA and wrap them in MXNet [50]. To derive the necessary gradients,
we manually apply the principles of reverse automatic differentiation, c.f . [49].
Code is available at https://github.com/visinf/semantic_lattice.

The grid search for scale parameters is performed on full-size training im-
ages using the respective evaluation metrics. If the basic features include color
channels, we only determine a single scale factor across all color channels to
keep the grid search feasible. Table 5 summarizes scale factors λS and λI used
in our experiments for spatial and intensity features, respectively. Remaining
hyperparameters, e.g . the learning rates, are chosen using the validation set.

We use a default batchsize of 16 and average over multiple batches if memory
permits only fewer samples. In rare cases, we observe large gradients in training

Table 5. Feature scale factors.

Task λS λI

Color upsampling, 2× 1.25 5.0
Color upsampling, 4× 0.65 5.0
Color upsampling, 8× 0.20 7.5
Optical flow upsampling 0.15 70.0
Semantic segmentation ups. 0.15 25.0

the embedding network, which we
counter with gradient clipping (at
0.1). The feature network is ran-
domly initialized with a default
Xavier initialization [51] while the
filter weights in permutohedral
space are initialized as Gaussian
kernels. The non-negativity of nor-
malization filters is ensured by
learning in the log-domain.

B Network architectures

The architecture of our embedding networks is described in Table 6. The pa-
rameter d̃ denotes the number of embedded features. We set d̃ = 1 for color
upsampling and d̃ = 3 for dense prediction tasks. Since embedded features are
concatenated with two-dimensional spatial coordinates, the semantic lattice re-
ceives features of dimensionality d = d̃ + 2. All convolution layers use a stride

? This project was mainly done during an internship at Amazon, Germany.

https://github.com/visinf/semantic_lattice

16 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

Table 6. Architecture of embedding networks.

Layer 1 2 3

Kernel size 3 3 3

Channels 15 15 d̃
Groups 1 1 1
Bias 3 3 3

Non-linearity 3 3 7

Batch normalization 7 7 3

Table 7. Architecture in perm. space.

Layer 1

Neighborhood size 3
Channels c
Groups c
Bias 7

Non-linearity 7

Batch normalization 7

of one and zero padding to preserve the input size. We apply leakyReLU activa-
tions with slope coefficients α = 0.2 as non-linearities. For batch normalization,
we use default parameters and apply the transformation to the channel axis.

Table 7 specifies the setup in permutohedral space used for our experiments.
The number of outputs c depends on the specific task and is determined by the
dimensionality of the input data. As such, we have c = 3 for color upsampling,
c = 2 for optical flow and c = 21 for semantic segmentation. All convolutions in
the permutohedral lattice are performed per channel, i.e. we set the number of
groups to c and learn a separate convolution kernel for each data dimension.

C Additional Experiments Color Upsampling

We start with a small ablation study performed on the task of color upsampling.
In a first experiment, we keep the permutohedral weights fixed and increase the
number of embedded features from one to two. However, the additional feature
does not lead to improved results but we even observe a small drop in PSNR on
the test split from 36.81 to 36.79. As a larger amount of feature dimensions leads
to an increased runtime, we choose the dimensionality of the feature embedding
to equal the number of basic features provided to the embedding network.

In a second setup, we evaluate the performance of the semantic lattice with
larger kernels in permutohedral space. Therefore, we learn permutohedral weights
of neighborhood size two with fixed basic features. We obtain a PSNR of 36.64
on the test set in comparison to a PSNR of 36.62 with a neighborhood size of
one. Again, we choose the smaller neighborhood size due to improved runtime.

Finally, we evaluate color upsampling for additional upsampling factors in
Table 8. We again observe that the semantic lattice performs best if the feature
embedding as well as the kernels are learnt. Interestingly, the benefit gets more
significant as the difficulty of the task increases, i.e. for larger upsampling factors.
As before, we clearly outperform baselines and related work.

D Additional Visualizations

We provide visualizations for the different tasks discussed in the paper.

Color upsampling. Visualizations of the 4× color upsampling task are given
in Fig. 4. The fully learnt semantic lattice is clearly superior to the deep guided

Learning Task-Specific Generalized Convolutions in the Perm. Lattice 17

Table 8. Evaluation of additional upsampling factors for the task of color upsampling
on the Pascal VOC 2012 Segmentation test set. ∗No pretrained network available.

PSNR [dB], ×2 PSNR [dB], ×8

Semantic lattice (scaled basic features) 40.05 33.93
Semantic lattice (learnt kernels) 40.10 34.06
Semantic lattice (learnt embedding) 40.20 34.23
Semantic lattice (both learnt) 40.22 34.33

Nearest neighbors 25.91 19.46
Bicubic upsampling 27.23 20.73
DGF [45] 37.80 32.97
DJIF [31] –∗ 20.57

filter as it correctly reconstructs small and thin color regions, e.g . the green and
blue strips on the white train. Moreover, the lattice shows considerably fewer
color bleeding artifacts, e.g . at the red parts of the bars in the first row.

Dense prediction tasks. Fig. 5 shows visualizations for ground truth and
predicted optical flow on several sequences of the Sintel dataset [4]. As already
discussed in the main paper, the semantic lattice leads to less blurry flow fields
in comparison to the original PWC-Net [39]. Additionally, it allows to recover
fine details at motion boundaries, e.g . the structure of the hair in the last row.

In Fig. 6, examples for segmentations on Pascal VOC 2012 [11] are provided.
Considering the results of DeepLabv3+, one observes that the segmentation
masks frequently exceed the borders of detected objects. Applying the semantic
lattice with learnt embedding and kernels allows us to reduce such margins. As
such, the obtained segmentations align better with the underlying objects.

References

49. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differen-
tiation in machine learning: a survey. J. Mach. Learn. Res. 18, 1–43 (2018)

50. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang,
C., Zhang, Z.: MXNet: A flexible and efficient machine learning library for hetero-
geneous distributed systems. arXiv:1512.01274 [cs.DC] (2015)

51. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS (2010)

18 Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth

Fig. 4. Left to right: Crops of ground truth, outputs of DGF [45], and outputs of the
semantic lattice for 4× color upsampling on Pascal VOC 2012. Best viewed on screen.

Fig. 5. Left to right: Ground truth, outputs of PWC-Net [39], and outputs of the fully
learnt semantic lattice on different Sintel sequences. Best viewed on screen.

Learning Task-Specific Generalized Convolutions in the Perm. Lattice 19

Fig. 6. Left to right: Crops of ground truth, outputs of DeepLabv3+ [7], and outputs
of the semantic lattice for segmentation on Pascal VOC 2012. Best viewed on screen.

