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Abstract. This paper summarizes the bio part of the 2011 community
based Signal Separation Evaluation Campaign (SiSEC2011). Two dif-
ferent data sets were given. In the first task, participants were asked to
estimate the causal relations of underlying sources from simulated bivari-
ate EEG data. In the second task, participants were asked to reconstruct
signaling pathways or parts of it from the microarray expression profiles.
The results for each task were evaluated using different objective perfor-
mance criteria. We provide an overview of the biomedical datasets, tasks
and criteria, and we report on the achieved results.

1 Introduction

The Signal Separation Evaluation Campaign (SiSEC) is a regular campaign fo-
cused on the evaluation of methods for signal separation. While its main focus
is on separation of audio data, after the campaign in 2010 [1] this is now the
second time that tasks on biomedical data analysis are proposed. This article
describes the bio part of SISEC 2011.

The standard application of ICA-algorithms in biomedical data analysis are
EEG and MEG data. In contrast to signal separation in audio datasets, the
respective mixing model is static. The algorithms to solve such a problem are
well established and are applied routinely by many researches. It is our opinion
that conceptually only minor technical details could be added to present day
knowledge. Additionally, a formulation of an ICA challenge for EEG/MEG data
is problematic because of two reasons: a) in contrast to audio data, for real
EEG/MEG data the ground truth is almost never known, and b), existing ICA
algorithms exploit different statistical properties, and the winning method for
simulated data will then be the one for which, essentially by coincidence, the
simulated statistical properties match the exploited ones.



We therefore decided to deviate from the 'standard’ problem and to propose
two different tasks. In the first task, source separation shall be applied to analyze
gene expressions, and in the second we simulate EEG data, but the task is not
to separate sources but to separate the effect of confounding noise in an estimate
of causal relations.

Details of the tasks can be found at http://sisec.wiki.irisa.fr/ and following
the link to ’biomedical data analysis’.

2 Estimating causal relations

2.1 Task

Noninvasive electrophysiological measurements like EEG/MEG measure to large
extent unknown superpositions of very many sources. Any relation observed
between channels is dominated by meaningless mixtures of mainly independent
sources. The question is how to observe and properly interpret true interactions
in the presence of such strong confounders. Since recently, a focus of research
are the causal relations between groups of neurons. Many methods have been
suggested to address this question for EEG or MEG data [2,3,4,5,6].

In this task contributors are requested to estimate the direction of interaction
for simulated unidirectional bivariate dynamical systems. The difficulty is the
presence of additive noise which is both non-white and spatially correlated.

The task is to estimate the direction of the interaction of the signal. A sub-
mitted result is a vector with 1000 numbers having the values 1, -1, or 0. Here, 1
means direction is from first to second sensor, -1 means direction is from second
to first sensor, and 0 means 'I do not know’.

2.2 Dataset

The dataset consists of 1000 examples of bivariate data for 6000 time points.
Each example is a superposition of a signal (of interest) and noise. The sig-
nal is constructed from a unidirectional bivariate AR-model of order 10 with
(otherwise) random AR-parameters and uniformly distributed input. The noise
is constructed of three independent sources, generated with 3 univariate AR-
models with random parameters and uniformly distributed input, which were
instantaneously mixed into the two sensors with a random mixing matrix. The
relative strength of noise and signal was set randomly. The Matlab code used to
generate the data was provided. Note, that the phrase ’simulated EEG data’ is
meant loosely. The simulation addresses the conceptual problems of EEG data,
but e.g. the actual spectra can be quite different from real EEG data.
The data z(t) were generated as

a(t) = (1 v)ﬁ‘ﬁﬂ ﬂﬁgﬁ (1)

where x is a unidirectional linear system and y are two independent noise sources
which are mixed into channels by a random matrix B. The parameter v was set



randomly between 0 and 1, || - || denotes Frobenius matrix norm, and X and
Y denote the full data as a matrix, e.g. X = (x(1),x(2),...,x(N)) for N data
points. The noise y(t) was generated with an AR(10)-model with diagonal but
otherwise random parameters and uniformly distributed input, i.e.

10

yi(t) = > Ap)(t = p) + mi(t) (2)

p=1

for ¢ = 1,2,3. For each data set the parameters A;; were selected randomly
according to a Gaussian distribution with a standard deviation 0.25. Nonsta-
tionary, i.e. diverging, systems were excluded. If the standard is substantially
larger, almost all systems are nonstationary. If it is chosen substantially smaller,
the spectra are nearly white. The ’innovation’ 7;(t) was uniformly distributed
in the range [—.5,.5]. This takes into account that some algorithms require non-
Gaussian data or, especially, non-Gaussian innovations.

The signal x(t) was generated in the following way. If, e.g., the first channel
was the sender, then x; (t) was generated with a random AR-model of order 10
in the same way as the noise term, and z2(t) was generated as

23(t) = Asa(p)a(t — p) + Ao1 (p)21(t — p) + €2(t) (3)

where, again, e2(t) was uniformly distributed in the range [—.5,.5]. The con-
struction for the other direction is analogous.

2.3 Evaluation criterion

For all examples either 1 or -1 is correct. The most important point here is the
way it is counted: you get +1 point for each correct answer; you get -10 points
for each wrong answer; and you get 0 points for each 0 in the result vector.
With this counting confidence about the result is added into the evaluation. It is
strongly recommended that for each example the evidence for a specific finding
is assessed. To our knowledge, this causality challenge is the first time that such
an evaluation scheme is proposed.

2.4 Results

We received a total of 5 submissions. Results are shown in tablel Another sub-
mission arrived after the deadline and after announcement of the results and was
not counted. All participants were among the list of people who were contacted
personally and were encouraged to submit.

This kind of challenge is new within the SISEC campaign and can therefore
not be compared to previous challenges.



Submission Total Points|Correct Detections|False Detection
S1 -2289 701 299
S2 [7] 252 352 10
S3 [8] -357 773 113
S4 [9,10,11,12,13] 218 278 6
S5 [14,15] -247 163 41

Table 1. Results of causality challenge. The total points can be calculated as the number of correct
detections minus ten times the number of false detections.

3 Cancer pathway reconstruction

3.1 The task

Cellular signaling pathways are the key transducers from extracellular signals
to cellular reaction. Dysfunction of signaling pathways is often involved in the
formation of cancer [16]. Thus, understanding the biology of cell signaling helps
to understand cancer and to develop new therapies. The regulation of these
signaling pathways takes place on multiple layers, from extracellular receptors
to intracellular transduction, ending with the transcriptional activation of target
genes. Single genes can take part in more than one pathway and the expression
profiles can be regarded as linear superpositions of different signaling pathways or
more generally biological processes. All gene expression levels are represented by
an M x N data matrix X = [x, ...x},] with each row-vector x,), representing the
gene expression levels off all NV genes measured in one experiment, or microarray.
Assuming a linear mixture model, each vector x,| represents a mixture of K
unknown source signals skT, each representing a pathway related gene expression
profile with the corresponding mixing coefficients represented as a column-vector
a,,. Thus, using blind source separation (BSS) techniques, the data-matrix X
can be decomposed into X = AS, where A is the M x K mixing matrix and S
the K x N matrix of source signals. These source signals can now be used as a
basis to identify distinct signaling pathways in terms of cellular responses [17].
A more detailed discussion of the linear factor model can be found in [18,19].

Here, the task is to reconstruct these signaling pathways or parts of it from
the microarray expression profiles using BSS techniques. In a first approximation
we consider a signaling pathways as gene lists. These pathway gene lists were
taken from NETPATH (www.netpath.org).

3.2 Dataset

The microarray technology a method for mRNA profiling has become one of
the most popular approaches in the field of gene expression analysis. Based on
the complexity of gene expression profiles, a variety of statistical methods have
been developed to provide insights into the biological mechanisms of gene expres-
sion regulation [20,21,22]. The dataset consists of the i gene expression profiles.
Each expression profile x; mirrors the expression of N genes via measuring the
level of the corresponding mRNA under a specific condition. In our case, mRNA



was extracted from ¢ = 189 invasive breast carcinomes [23] and measured us-
ing Affymetrix U133A Gene-chips. The Affymetrix raw data was normalized
using the RMA algorithm [24] from the R Bioconductor package simpleaffy.
Non-expressed genes were filtered out and Affymetrix probe sets were mapped
to Gene Symbols. This resulted in a total of N = 11815 expressed genes.

3.3 Evaluation

Evaluation of the reconstructed pathways was performed by testing for the sig-
nificance of enriched genes that can be mapped to the distinct pathways. For
each source signal or estimated pathway we identify the number of genes that
map to the distinct pathways and calculate p-values using Fisher’s exact test.
To correct for multiple testing we use the Benjamini-Hochberg procedure to es-
timate false positive rates (FDR). Now, after Benjamini-Hochberg correction a
reconstructed pathway was declared as enriched if the p-value was below 0.05.
Finally, the number of all different significantly reconstructed pathways were
counted.

3.4 Results

There were no submissions.

4 Conclusion

In this paper we presented the specifications of the biomedical data analysis part
of SiSEC2011 and summarized the performance obtained over all the submis-
sions. Two different tasks of very different nature we given. The *Cancer pathway
reconstruction’ received no submission which could be due to the fact that the
mathematical details were unclear to people not familiar with the biology.

For the EEG/MEG data analysis it might appear natural that ICA chal-
lenges were proposed. However, the ICA model for these data is not convolutive,
which, from an algorithmic viewpoint, is a much simpler case than acoustic data.
For instantaneous mixtures the algorithms have become standard. Probably ev-
erything which could be said , apart from minor details, was said already, and
such a challenge does not attract researchers working on the technical aspects.

It was therefore decided to propose a different kind of challenge, in which
causal direction in the presence of noise were to be estimated and in which evi-
dence had to assessed for a successful submission. The large variation across final
scores that it is largely unclear how to optimally solve this problem. Although
the data were, strictly speaking, nonlinear (i.e. non-Gaussian), the nonlinearity
was small, and people working on nonlinear methods were effectively left out.
For the future we intend to expand the simulations such that both linear and
nonlinear methods can reasonably be applied.
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