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Abstract

To overcome range anxiety problem of Electric Vehicles (EVs), an accurate real-time energy con-

sumption estimation is necessary, which can be used to provide the EV’s driver with information

about the remaining range in real-time. A hybrid CNN-BDT approach has been developed, in

which Convolutional Neural Network (CNN) is used to provide an energy consumption estimate

considering the effect of temperature, wind speed, battery’s SOC, auxiliary loads, road elevation,

vehicle speed and acceleration. Further, Bagged Decision Tree (BDT) is used to fine tune the es-

timate. Unlike existing techniques, the proposed approach doesn’t require internal vehicle param-

eters from manufacturer and can easily learn complex patterns even from noisy data. Comparison

results with existing techniques show that the developed approach provides better estimates with

least mean absolute energy deviation of 0.14.

Keywords: Driving Range Anxiety, Energy Consumption Estimation, Electric Vehicle,

Convolutional Neural Network, Bagged Decision Tree, Microscopic driving parameters

1. Introduction

Transportation industry is seeing Electric Vehicles (EVs) as the future mode of transport due to

depleting fossil fuels and increasing need of overcoming global warming due to vehicle pollution.

For this, it is necessary to overcome the barriers faced by the EVs for their mass adoption. Number

of studies [1–5] have been conducted to analyse the major factors which influence the market

penetration of electric vehicles. It has been found that short driving range, scarcity of public

charging infrastructure, long recharging time and high initial cost are the major factors among

others. Consumers show more interest in buying a plug-in hybrid vehicle than all electric battery

vehicle. The main reason for this is short driving range of EVs which makes the driver anxious

that whether he/she will be able to reach his/her destination or not with current state of charge of
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Abbreviations

EV Electric Vehicle

CNN Convolutional Neural Network

SOC State of Charge

BDT Bagged Decision Tree

PCE Power Consumption Estimation

RMSE Root Mean Square Error

MAE Mean Absolute Error

Corr Correlation

MAEdev Mean Absolute Energy Deviation

MPTDC Mean Prediction Time per Drive Cycle

UDDS Urban Dynamometer Driving Schedule

SFTP Supplemental Federal Test Procedures

FASTSim Future Automotive Systems Technology Simulator

Symbols

vehsp Vehicle’s Speed

roadel Road Elevation

vehacc Vehicle’s Acceleration

auxld Auxiliary Loads

windsp Wind Speed

battsoc State of charge of battery

envtemp Environmental Temperature

SOCi Battery’s state of charge at ith time instant

Ecap Battery’s rated energy capacity

Estpow Power consumption estimated by the proposed approach

Actpow Actual power consumption as given in dataset

Estpow Mean of estimated power consumption

Actpow Mean of actual power consumption

Preg Regenerative power

ηte Transmission efficiency

δ Driving efficiency

m EV’s weight related coefficient

ρ Air density

CD Aerodynamic drag coefficient

Paccessory Power consumed by accessories

ηm Motor efficiency

k Percentage of energy restored by the motor during braking

battery. Although, advancements in battery technology [6, 7] helped in increasing the consumer’s

confidence but reliable energy usage estimate in real time is the key that can boost the consumer’s

trust by a great deal. Hence, the main focus of this work is to develop a reliable methodology for

accurate energy consumption estimation of EVs.
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There are number of methodologies developed by researchers to estimate EVs energy con-

sumption. These can be categorised based on the granularity level (i.e. microscopic, mesoscopic

and macroscopic), at which they were developed for different applications. The macroscopic mod-

els [8–13], are those which can be used to estimate EVs total energy consumption at the trip level

which include number of connecting roads with different traffic conditions. The mesoscopic mod-

els [14–17], are the models used to estimate the EVs energy consumption for each road in the

road network so that energy consumption cost can be assigned to each road in the road network

and then can be used to plan the optimal route. The microscopic models [18–22], are the models

which provide more detailed second-by-second energy consumption for a EV based on the differ-

ent influencing factors. The microscopic models can be aggregated to get the energy consumption

estimates for each road in the road network and hence can serve the purpose of mesoscopic mod-

els and then can be further aggregated to get the energy consumption estimate for the whole trip

and serve the purpose of macroscopic models. Also, these models can be used for providing the

drivers with real-time instruction based on the current energy consumption and remaining energy

in the battery to maintain an optimal speed or to take an alternative path so that the driver can reach

his/her destination with minimum energy consumption. Hence, these models can help in reducing

driver’s range anxiety. Due to this, in this work a microscopic model which can give real time

energy consumption estimates has been developed.

The approaches developed so far for EVs energy consumption estimation have either used

simulation techniques [23–25] or regression based techniques like linear regression [13, 20, 26],

polynomial regression [8, 12, 14, 15, 19], logarithmic regression [11]. A few Neural Network

(NN) [9, 10], Neuro Fuzzy [27, 28] and Convolutional Neural Network (CNN) [22] based tech-

niques were also developed. The simulation based techniques require vehicle specific calibration,

which require internal vehicle parameters, like efficiency curve of the motor and internal resis-

tance of the battery etc. These vehicle specific parameters are very hard to obtain because vehicle

manufacturers doesn’t share this information in public domain. Also, due to vehicle specific cal-

ibration the simulation based models can not be generalized. On the other hand, real world data

is required for the regression based techniques and most of these techniques are sensitive to noise

[29], which is generally the case with real-world data, as it is mostly obtained from different sen-

sors. Although, the techniques based on NN [9, 10, 22] can handle the noisy data better than

other regression techniques but they lack the applicability in real-world. The models presented in

[9, 10], provide single energy consumption output for the whole trip. Hence, these models can not

be used by the drivers for real time guidance based on the current energy consumption to maintain

an optimal speed or to take an alternative path, so that the driver can reach his/her destination

with minimum energy consumption. Also, these models have considered speed, acceleration, jerk

and road related parameters but there are many other influencing parameters that need to be con-

sidered. The neuro-fuzzy based techniques [27, 28], provide encouraging results but they can be

improved further for representing the non-linear patterns more accurately by following techniques

presented in [30–33]. Similarly, the CNN model developed in [22], show encouraging results with

high robustness and considered road elevation, vehicle speed and tractive effort as input. There

are number of studies [34, 35] which show that the energy consumption of EVs get influenced

by several other parameters (like environment temperature, wind, battery’s State of Charge (SOC)

and auxiliary loads etc.) significantly. So, to get accurate estimates it is important to consider the
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effect of all these factors.

To address the research gaps discussed above, a hybrid approach using Convolutional Neural

Network (CNN) and Bagged Decision Tree (BDT) has been developed for providing a real-time

accurate estimate of EVs energy consumption. The CNN used in current work is a multi-channel

CNN i.e. there are multiple parallel branches where each branch extract important features from

individual input parameter and then extracted features are combined for predicting the energy

consumption. The proposed approach also uses a BDT, which consist of multiple decision trees

ensembled together. The BDT is used as a fine tuner to improve the initial estimate given by

CNN by decreasing the prediction error further. As discussed above, the one of main challenge

is the requirement of vehicle specific parameters from the vehicle manufacturers to calibrate the

simulation models. As the vehicle manufacturers do not provide these vehicle specific parameters

openly, it is very hard to calibrate the simulation models without these. The proposed CNN-BDT

model does not require any vehicle specific parameters for its working. It takes seven input pa-

rameters namely, vehicle speed, vehicle acceleration, road elevation, wind speed, auxiliary loads,

environmental temperature and initial battery’s SOC. These parameters are easily available, for in-

stance, vehicle speed is easily available from vehicle, vehicle acceleration can be computed from

vehicle speed, Geographic Information System (GIS) can be used for obtaining road elevation,

freely available weather API’s (like API’s from OpenWeather [36]) can be used to obtain wind

speed and environmental temperature etc. Also one of the problem with regression techniques is

their noise sensitivity. The NN based techniques perform much better than other regression tech-

niques because the NN based techniques can recognize the patterns more easily even from noisy

data. The proposed technique is a hybrid technique, which uses CNN as one of its sub-module,

hence can handle the noisy data quite easily. In comparison to the other NN based techniques

[9, 10], which do not provide real-time output, the proposed CNN-BDT technique provide energy

consumption output in real-time. Hence, the proposed CNN-BDT technique can be used for real-

time driver guidance for optimal battery usage. The current proposed technique is an extension to

the technique presented in [22] and can provide better real-time energy consumption estimates in

terms of accuracy, as it considers the effect of almost all the influencing factors namely, vehicle

speed, acceleration, wind speed, auxiliary loads, battery’s SOC, environmental temperature and

road elevation. The major contributions of the current work are as discussed below:

i) A hybrid CNN-BDT approach has been developed to provide the EV’s driver with reliable

real-time estimates of energy consumption. The approach can also be used to provide trip

level energy consumption estimates.

ii) The proposed technique uses a multichannel CNN model which takes multiple one-dimensional

time series inputs and extract features from them and then predict the energy consumption

estimate based on the extracted features. Thus, the approach is suitable for modelling the

non-linear relationship among the influencing parameters and can generalize well even in the

presence of sensor noise or outlier data.

iii) Bagged Decision Tree (BDT) is used as a fine tuner to fine tune the estimate provided by CNN

based on the current input parameters. Hence, the proposed technique uses the strengths of

both CNN and BDT and provide accurate results.
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iv) The proposed technique takes seven input parameters namely, vehicle speed, acceleration,

wind speed, auxiliary loads, battery’s SOC, environmental temperature and road elevation.

So, it takes into account the influence of all the major factors.

v) The proposed technique doesn’t require any of the internal vehicle parameters from vehicle

manufacturer and hence, can be easily trained for any other vehicle.

The paper has been further organized as follow. Section 2 provide the detailed description of

the proposed methodology. Section 3 discusses the experimental setup which includes datasets

used, preprocessing of data and the hyperparameters used. The results obtained from the ex-

periments and comparison results of the proposed technique with existing techniques have been

discussed in Section 4 and Section 5 concludes the paper.

2. Proposed Architecture

There are number of factors like environment temperature, wind speed, road elevation, bat-

tery’s state of charge (SOC) etc which influence the energy consumption of an EV. These factors

vary a lot in real life and have a non-linear relationship among them. So, to effectively represent

their non-linear relationship a hybrid CNN-BDT approach has been adopted, which can provide

accurate power / energy consumption estimates of an EV under different conditions. Figure 1,

shows the proposed approach’s architecture. There are four main computational modules of the

proposed approach namely, Power Consumption Estimation (PCE) Module, Re-sampler Module,

Fine Tuner Module and State of Charge Calculator Module. The proposed approach takes seven

inputs namely, vehicle speed, vehicle acceleration, environment temperature, wind speed, auxil-

iary loads, road elevation and battery’s initial SOC. As discussed in Section 3.1, these inputs are

small partitioned time series of 10 Hz frequency each of 10 sec duration i.e. each partition has 100

readings for 10 sec duration. The environmental temperature and battery’s initial SOC does not

change much in the duration of 10 sec so they have been considered as constant for a particular

partition. The inputs are provided simultaneously to the PCE and Re-sampler module. The PCE

module consist of a CNN model, which uses these inputs and provide an estimated power con-

sumption by the EV. The power consumption estimate given by PCE module is of 1 Hz frequency.

The Re-sampler module takes the seven inputs and up/down sample them to match the frequency

of inputs with output from PCE module i.e. 1 Hz. Then, the re-sampled inputs along with esti-

mated power consumption are further passed through a Fine Tuner module which uses BDT and

fine tune the estimate of power consumption by reducing the error. The fine tuned estimated power

consumption is then used by the State of Charge Calculator module. It calculates the remaining

state of charge of the battery based on the power consumed by the EV. This calculated remaining

SOC is then used as the initial battery SOC for the next partition of 10 sec. Following sub-sections

discuss in detail the working of these four computational modules of proposed architecture.

2.1. Power Consumption Estimation (PCE) Module

The Power Consumption Estimation (PCE) Module is the module responsible for estimating

the power consumption of EV under different environmental and road conditions. For this a multi-

channel CNN, as shown in Figure 2, has been developed. The multi-channel CNN is inspired from
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Figure 1: Architecture of Proposed Approach

the network architecture used in [37], originally developed for hand gesture classification from

time series pose data. In this work, the proposed architecture takes seven input time series namely,

vehicle’s speed (vehsp), road elevation (roadel), vehicle’s acceleration (vehacc), auxiliary loads

(auxld), wind speed (windsp), initial state of charge of battery (battsoc) and environmental tem-

perature (envtemp). As discussed in Section 3.1, all of these time series (say x) in the dataset were

recorded at 10 Hz frequency and were partitioned into n small time series (say xi, i = 1, 2, ..., n)

each of 10 seconds duration. These small time series each of 10 sec duration became the input

for the network. It has been observed that out of these seven input parameters first five parameters

vary a lot but the environmental temperature (envtemp) and battery’s initial SOC (battsoc) does not

change during the interval of 10 seconds. Due to this, these two parameters have been considered

as constant for each partition and no feature extraction has been performed for these two parame-

ters. Each of the other five parameters have been passed to a separate feature extraction module,

each of them have four separate branches to extract features. Each feature extraction module has

one residual branch and three similar convolutional branches.

Residual branches make gradient backpropagation better during the training and hence the net-

work optimize easily which ultimately increase the accuracy of network [38]. The residual branch

is acting like an identity function but instead of giving same output as input three average pooling

layers have been used. The average pooling layers downsample the data by taking the average of

the input data from a particular region. The pooling layers make the CNN locally invariant i.e.

the CNN can extract the same features from the input regardless of rotation, scaling or shifting

of features [39]. So, the pooling layers not only reduce the network scale, but also extract the

important features from the input. This also helps in avoiding overfitting of the network. The main

feature extraction is done by the three convolutional branches which have similar architecture, as

discussed below.

Each convolutional branch has three convolutional layers followed by average pooling layer

except the last convolution layer which is followed by a dropout layer and then a pooling layer.
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Convolutional layers are different from traditional fully connected layers as they apply convolu-

tional filters on the input. The convolutional filters extract the local features by focusing on a

particular region of the input. One convolutional layer can have hundred of such filters and ex-

tract hundreds of features from the input. This helps the convolutional layers to learn the complex

patterns. In a single branch, the convolutional layers differs from each other in terms of num-

ber of kernels used, for instance, in each convolutional branch the first convolutional layer has 8

kernels whereas the second and third convolutional layer has 4 kernels. Convolutional branches

differ from each other in terms of size of kernels i.e. one convolutional branch has kernels of

size 3, second has kernels of size 5 and third has kernels of size 7. Branches with different ker-

nel size help the network to extract and learn the features based on different time resolutions.

Each convolution layer has padding of n, which depend on kernel size, as given by the equation

n = (kernel_size − 1)/2. ReLU has been used as an activation function for each convolutional

layer and can be defined as ReLU(x) = max(0, x). The activation function in CNN has the two

main advantages. First, the activation function convert the output to a scaled range which helps fast

training of the network. Secondly, the combination of activation function help the network learn

more complex non-linear patterns from input. Each convolutional branch has a dropout layer as a

regularizer. During training, the dropout layers make some outputs from previous layer randomly

ignored. This makes training process noisy and force the layers to co-adapt for mistakes made by

prior layers which ultimately makes the network more robust.

The output features from the convolutional and residual branches are concatenated at the end

which results in the output features of size 13 × 12 extracted by feature extraction module. The

extracted features from each feature extraction module are further concatenated and then flattened

in the consecutive layers. These flattened feature vector of size 780 and the two parameters of

environment temperature (envtemp) and battery’s initial SOC (battsoc) are concatenated to form

the final feature vector of size 782 which is then passed through two successive fully connected

layers to get the final output of estimated power consumption of size 10 for the 10 second interval.

2.2. Re-sampler Module

The Re-sampler module up-sample or down-sample the input parameters to match the fre-

quency of output generated by PCE Module. As discussed in the PCE module, the estimated

power consumption output generated is of 1 Hz frequency i.e. one data point for each second, so it

is necessary to re-sample the input parameters to match the frequency of 1 Hz before giving them

as input to the Fine Tuner module. The input parameters namely, environment temperature and

battery’s initial SOC, as mentioned in PCE module are considered as constant for each 10 second

interval. Due to this, the input parameters other than environment temperature and battery’s initial

SOC are down-sampled from 10 Hz to 1 Hz and the input parameters of environment temperature

and battery’s initial SOC are up-sampled to 1 Hz by repeating the same value 10 times.

2.3. Fine Tuner Module

The fine tuner module takes eight input parameters namely, vehicle’s speed, road elevation, ve-

hicle’s acceleration, auxiliary loads, wind speed, environmental temperature, batter’s initial SOC

and estimated power consumption. First seven of these parameters are re-sampled by the Re-

sampler module and the last one is estimated by the PCE module. The main purpose of fine tuner
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module is to fine tune the estimated power consumption based on the other input parameters by

reducing the error in prediction. Multiple experiments were performed with different regression

models and it has been found that Bagged Decision Trees (BDT) performed better than other

regression models. The BDT is a collection of multiple decision trees ensembled together us-

ing bagging. Bagging or bootstrap aggregation is an ensemble learning technique proposed by

Breiman [40]. The main objective of bagging is to reduce the variance of learners, in this case

the decision trees. This is achieved by combining the output of multiple learners through averag-

ing which ultimately help to achieve high prediction accuracy. In BDT, each learner is a separate

decision tree and each decision tree is trained separately on subset of training dataset. For this,

the training dataset is divided into multiple subsets using the bootstrap resampling. In bootstrap

resampling, samples are selected from the training dataset with replacement. The output from all

the separate decision trees are then averaged to obtain the final predictions which is in this case the

fine tuned estimated power consumption. In this work, the number of trees and other parameters

of the BDT are optimized by minimizing the cross validation error. The optimized model contains

10 weak tree learners, ensembled together in BDT with minimum prediction accuracy.

2.4. State of Charge Calculator Module

The fine tuned estimated power consumption obtained from Fine Tuner module is used by the

State of Charge Calculator Module to calculate the remaining state of charge of battery. For this,

the following equation, given in [41], can be used:

SOCt = SOC0 −

(

∫ t

0
Estpowdt

Ecap

× 100

)

(1)

where SOC0, SOCt represent the battery’s initial state of charge and state of charge at time t.
Estpow is the fine tuned estimated power consumption for the time interval and Ecap represent the

battery’s rated energy capacity. In the current case as each of the small partitioned time series is

of 10 sec duration, value of t will be 10. So, the system requires the initial SOC only for the first

partitioned time series and after that it can calculate the SOC based on the energy consumed by

the vehicle and the calculated SOC can be used as initial SOC for next time series partition.

3. Experimental Setup

In this section, the details of dataset, hyperparameters and other information related to the

training of the proposed approach has been discussed.

3.1. Datasets

For training, testing and validating the proposed approach data set from two different sources

was used. The first source was Downloadable Dynamometer Database (D3) [42] which contains

data obtained by performing a number of dynamometer tests at Argonne National Laboratory

(ANL) of Advanced Powertrain Research Facility (APRF) on number of electric vehicles. These

tests were conducted for number of drive cycles at 0% road elevation under different environmental

conditions.

9



As the data available at D3 was very small and was not sufficient for training, testing and

validating the approach, a large amount of dataset was obtained from a Nissan Leaf’s simulated

model provided in a simulation tool named FASTSim (Future Automotive Systems Technology

Simulator) [43]. The simulation model used Nissan Leaf’s vehicle specific parameters which can

be obtained from [22, 44, 45]. Dataset for other electric vehicles can also be obtained by develop-

ing similar simulated models for other electric vehicles subject to the availability of vehicle data

from manufacturer like efficiency curve of motor, internal resistance of battery etc. Dataset was

generated using the simulated model for 5 different temperatures (from −5◦C to 35◦C with inter-

val of 10◦C), 10 road elevation profiles (road grade varies from -20% to 20%), 4 different initial

state of charge of battery (from 30% to 90% with interval of 20%), 40 drive cycles (like UDDS

(Urban Dynamometer Driving Schedule) and SFTP (Supplemental Federal Test Procedures) etc)

and 8 wind speed profiles. Wind speed has been categorized into 13 different categories according

to Beaufort scale [46], namely, Calm (< 0.5 m/s), Light Air (0.5 - 1.5 m/s), Light Breeze (1.6 -

3.3 m/s), Gentle Breeze (3.4 - 5.5 m/s), Moderate Breeze (5.5 - 7.9 m/s), Fresh Breeze (8 - 10.7

m/s), Strong Breeze (10.8 - 13.8 m/s), Near Gale (13.9 - 17.1 m/s), Gale (17.2 - 20.7 m/s), Strong

Gale (20.8 - 24.4 m/s), Storm (24.5 - 28.4 m/s), Violent Storm (28.5 - 32.6 m/s) and Hurricane (≥
32.7 m/s). Out of these 13 categories first 8 were used for data generation from simulated model

because the remaining categories are not preferable conditions for driving. It is to be noted that

more data can be generated by varying the environmental and road conditions and using new drive

cycles.

From now onwards, the dataset obtained using the simulated model of FASTSim and the

dataset downloaded from D3 will be denoted as DS − I and DS − II , respectively. Both the

datasets have time series data which is recorded at frequency of 10 Hz i.e. for each second there

are 10 readings. In order to train, validate and test the proposed approach datasets were parti-

tioned into a number of partitions each of 10 seconds interval. So, in total the dataset DS − I and

DS − II were partitioned into approximately 17 lacs and 3500 partitions, respectively. 70% of

the partitions of dataset DS − I were used for training the proposed approach and the remaining

partitions, i.e. 30%, were used for validation. Henceforth, the training and validation dataset will

be represented by DS−Itr and DS−Ival, respectively. The testing of the proposed approach was

done using dataset DS − II .

3.2. Data Preprocessing

As discussed in Section 3.1, both the datasets have data of multiple parameters recorded at 10

Hz frequency. For experimental purpose, the time series data from the datasets were divided into

smaller partitions each of 10 sec interval i.e. each partition has 100 readings. Time series data for

each parameter (say z) from the dataset was normalized, using the Eq. (2), into the range of [0,1]

before using it for training, validation or testing the proposed approach.

ẑi =
zi −min(z)

max(z)−min(z)
(2)

In above equation, ẑi, zi, min(z) and max(z) represent the ith normalized partition of time

series z, ith partition of time series z, minimum and maximum values of time series z, respectively.
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3.3. Training

In the proposed model there are mainly two modules, namely, PCE Module and Fine Tuner

Module. The PCE module was implemented in Python using PyTorch APIs and the Fine Tuner

module was implemented in MATLAB 2019a. PyTorch packages, torch.nn and torch.optim, was

used to define the multi-channel CNN architecture for PCE module and loss functions used for

learning. It also provides a number of APIs for training and testing the created model. For training

the BDT of Fine Tuner Module an addon, named Regression Learner App, provided in MATLAB

was used. It can be used for training number of different regression models in MATLAB. The

implementation code for the proposed approach along with sample data has been provided on

GitHub (https://github.com/shatrughanmodi/CNN-BDT). After training the PCE and Fine Tuner

modules separately, both the modules were integrated by calling MATLAB code from Python.

The training of modules was done on a system with 8 GB RAM and Intel i5 Processor. While

training the modules, the feedback loop, in which the remaining SOC calculated after each 10 sec

interval is fed to the initial SOC of next interval, was not used, but the feedback loop was used

while testing the proposed approach.

First, the PCE module was trained using the 70% of time series data from the dataset DS − I .

For training the PCE module, the weights of all the convolutional and fully connected layers were

initialized using the Xavier initialization [47]. It initializes the layer’s weight from a random

uniform distribution with limits of
[

−
√

6

fanin+fanout

,
√

6

fanin+fanout

]

, where fanin and fanout

are the number of input connections to the layer and number of output connections from the layer,

respectively. The PCE module was trained with batch size of 64 for 3000 epochs using Adam

optimization algorithm [48]. The Adam optimizer has the combined advantages of two stochastic

gradient descent algorithms i.e. AdaGrad and RMSProp. The Adam Optimizer uses the delta

learning rule to update the weights of the network. It basically computes an exponential running

average of the gradients and square of gradients. The decay rate of these running averages are

controlled by the parameters β1 and β2 which were initialized to 0.9 and 0.999, respectively. The

initial learning rate α was set to 0.001 and to avoid division by zero during training epsilon ǫ
was set to 10−8. The Mean Square Error (MSE) was used as the loss function to minimize the

MSE between the actual and estimated power consumption. To avoid overfitting, dropout layers

were used as regularizers in each convolutional branch of feature extraction module. Number of

experiments have been performed by varying the drop rate p and it has been found that increasing

the drop rate after certain threshold (in this case 0.2) does not reduce the testing error. After

training the PCE module, the Fine Tuner Module was trained using the output obtained from PCE

module and re-sampled input data obtained from the Re-sampler module.

The bagged decision tree of Fine Tuner Module was developed by ensembling the multiple de-

cision trees. The number of trees and other parameters were optimized by using the bayesian op-

timization which tries to minimize the cross validation error. The model, optimized with bayesian

optimization, has 10 weak tree learners which were ensembled to form a bagged decision tree with

minimum prediction error.
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4. Results and Discussion

In this section, the testing results obtained using proposed architecture have been discussed.

Figure 3 and 4, show energy consumption prediction comparison of the proposed approach with

the actual energy consumption of EV under different conditions for UDDS (Urban Dynamometer

Driving Schedule) drive cycle with initial battery’s SOC level at 30% and 70%, respectively. The

different profiles of road grade, air speed, auxiliary load and vehicle speed, which were used to

obtain the results shown in above mentioned figures, have been given in Table 1.

Table 1: Different Parameter Profiles

Parameter Name Profile Minimum Maximum Mean Standard Deviation

Vehicle Speed (m/s) UDDS 0 25.347 8.747 6.576

Auxiliary Load (W)
Profile 1 0 0 0 0

Profile 2 952.941 1124.705 977.649 41.605

Air Speed (m/s)
Profile 1 0.084 0.214 0.150 0.019

Profile 2 11.305 13.187 12.299 0.353

Road Grade (%)

Profile 1 0 0 0 0

Profile 2 -18.765 17.696 1.198 9.107

Profile 3 -17.953 10.262 -8.064 9.883

There are number of observations that can be drawn from the Figures 3 and 4. From a single

sub-figure of these figures, it can be observed that how auxiliary loads and air speed influence

the energy consumption of EV. For instance, observe Figure 3c, energy consumption for four

combinations of air speed and auxiliary loads have been presented each with different color. It can

be seen that when the wind flows at higher speed as in air speed profile 2 and also auxiliary loads

have been applied as in auxiliary load profile 2 the energy consumption is highest as compared

to the energy consumption with other combination of air speed and auxiliary loads. There is

approximately 50% increase in energy consumption under air speed profile 2 and auxiliary load

profile 2 as compared to under air speed profile 1 and auxiliary load profile 1 (i.e. no auxiliary

load). So, a significant amount of energy gets consumed to overcome the aerodynamic drag and

fulfill the demand of auxiliary loads.

The effect of road grade profile can be seen clearly by comparing the energy consumption

within a column of the Figures 3 and 4, where all other parameters are same but only road grade

varies. For instance, consider the middle column of Figure 4, the energy consumption for air speed

profile 2 and auxiliary load profile 2 after completing the drive cycle is about 9 MJ, 11 MJ and

-8 MJ in Figure 4b, 4e and 4h, respectively. Energy consumption for grade profile 2 is more as

compared to grade profile 1 because grade profile 1 has zero mean and zero standard deviation i.e.

no elevation/de-elevation whereas grade profile 2 has +ve mean i.e. mostly elevation. Similarly,

energy consumption for grade profile 3 is -ve because mean grade for grade profile 3 is -ve i.e.

de-elevation, so the energy will be generated which will be used to charge the battery, hence -ve

energy consumption.

Similar to road grade, the effect of temperature can be observed by considering one of the rows

of the Figures 3 and 4, where only environment temperature is different for each sub-figure in a
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row and all other parameters are same. For instance, consider the second row of Figure 3, the

difference in energy consumption due to change in temperature is clearly visible. There is a peak

at approximately 5 min in Figures 3e and 3f whereas no such peak exist in Figure 3d. The main

reason for this is that the battery’s performance degrades with decrease in temperature as battery’s

capacity decreases at low temperature due to increase in internal resistance of battery. Due to this,

battery can not provide enough power to the vehicle to reach the desired speed or acceleration

and hence driver is forced to run the vehicle at low speed. The peak in the figures is due to high

speed/acceleration demand which was successfully fulfilled at temperature of 15◦C and 35◦C but

at environmental temperature of −5◦C the battery was not able to provide the enough power. This

behaviour is normally seen when the battery’s SOC is low like in this case where initial SOC is

30% but when the initial SOC is 70%, as in second row of Figure 4, the energy consumption

pattern at low temperature is quite similar to the energy consumption pattern at high temperature.

From the above discussion, it can be concluded that all of these parameters namely, vehicle

speed, vehicle acceleration, road elevation, wind speed, auxiliary loads, environmental tempera-

ture and initial battery’s SOC, are influencing the energy consumption of EV significantly. Also

from the Figures 3 and 4, it can be observed that the proposed approach successfully represent the

non-linear influence of these parameters on energy consumption of EV with small deviation and

can be used to estimate the energy consumption of EV in real-time.

4.1. Cross Validation

Cross validation of the proposed approach has been performed to validate the generalizability

and robustness of proposed methodology. There are several cross validation techniques and re-

peated k-fold cross validation is one of them, which is often used by the researchers to validate

their approach. In the current work, repeated 10-fold cross validation has been performed. The

performance of the proposed approach has been measured using the following metrics:

i) Root Mean Square Error (RMSE): It is a widely accepted and standardized metric to mea-

sure performance of a system by calculating the error rate. Following equation was used to

calculate the RMSE for the proposed approach:

RMSE =

√

∑n

i=1
(Actipow − Estipow)

2

n
(3)

where Actpow represent the actual power consumption, Estpow represent the power consump-

tion estimated by the proposed approach and n represent the total number of observations

under consideration.

ii) Mean Absolute Error (MAE): It is another standardized metric which provides an insight

about the absolute deviation of estimation as compared to the actual value. Equation given

below was used to measure the MAE between the estimated and actual power consumption:

MAE =

∑n

i=1
|(Actipow − Estipow)|

n
(4)
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In above equation, same notations to represent the different variables of total number of used

observations, actual and estimated power consumption has been used, as in Eq. (3).

iii) Correlation (Corr): To measure the relationship between two variables statistically, corre-

lation has been widely used. Value of correlation lie between [-1,1] for two variables. The

negative value of correlation for two variables, say x and y, indicates that both the variables

show opposite behaviour to each other i.e. if x increases then y decreases and if x decreases

then y increases. Zero correlation means the two variables have no relation among them and

positive correlation between two variable x and y indicates the linear relation between the

variables i.e. both the variables show similar behaviour which means y increases if x in-

creases and y decreases if x decreases. So, for any system the correlation of estimated and

actual variable must be close to 1 to be categorized as good. Following equation was used to

calculate the correlation of estimated and actual power consumption:

Corr =

∑n

i=1
(Actipow −Actpow)(Estipow − Estpow)

√

∑n

i=1
(Actipow − Actpow)2

∑n

i=1
(Estipow − Estpow)2

(5)

where Actpow is the average actual power consumption and Estpow is average estimated power

consumption and other symbols represent the same variables as in Eq. (3).

In order to perform the 10-fold cross validation once for the proposed approach, dataset DS−I
was divided into equally sized 10 small datasets. 70% of these equally sized 10 datasets were

selected as the training set and remaining 30% were used as validation set. Then the CNN model

of PCE Module and bagged decision tree of the Fine Tuner Module were trained using the training

set and validated using the validation set. The process of selecting the training-validation set and

training and validating the proposed approach using the training-validation set was repeated 10

times (the folds). The datasets for training-validation set were selected, such that each of the

10 equally sized datasets is part of the validation set at least once. The process of 10-fold cross

validation was repeated 5 times (the runs). The performance of the proposed approach during the

repeated 10-fold cross validation has been shown in Figure 5. From the figure, it can be observed

that the results from different runs overlap and also the results does not vary much. So, it can

be concluded that the proposed approach performed consistently well during each run of repeated

10-fold cross validation with low variance.

4.2. Comparative Analysis

The results of four existing approaches, presented in [9, 19, 20, 22], are compared with the

proposed approach to benchmark the results. The existing techniques were implemented for com-

parison as discussed below:

i) Galvin [20] proposed a multivariate model for estimation of EVs power consumption con-

sidering the speed and acceleration of the vehicle as input parameters. Following equation

represent his model for NissanSV:
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P = 479.1V − 18.93V 2 + 0.7876V 3 + 1507V A (6)

where P , A and V is the power consumption, acceleration and speed of the EV, respectively.

ii) Yang et al. [19] developed a model to estimate power consumption also taking into account

the regenerative mode of the motor operation. They gave two Eqs. (7) and (8) for normal

operation mode and regenerative operation mode, respectively.

P =
v

ηteηe

(

δm
dv

dt
+mg(f + i) +

ρCDA

2
v2
)

+ Paccessory (7)

Preg = kvηteηm

(

δm
dv

dt
+mg(f + i) +

ρCDA

2
v2
)

+ Paccessory (8)

where P , Preg, v, ηte, δ, m, f , i, ρ, CD, A, Paccessory, k and ηm represent the power con-

sumption, power regenerated, vehicle speed, transmission efficiency, driving efficiency, EV’s

weight related coefficient, EV’s mass, rolling resistance coefficient, road grade, air density,

aerodynamic drag coefficient, frontal area of vehicle, power consumed by accessories, per-

centage of total energy which can be restored by the motor during braking and motor effi-

ciency, respectively. Parameter k has been defined based on the vehicle’s speed as in Eq.

9:

k =











0.5 + 0.3
v − 5

20
v ≥ 5m/s

0.5 ∗
v

5
v < 5m/s

(9)

The above model has been implemented using the values of m, CD and A provided in [22,

44, 45] for Nissan Leaf. The values of δ, ρ, ηte, ηm, ηe and f are given in [19] as 1.1, 1.2, 0.9,

0.9, 0.8 and 0.015, respectively.

iii) Alvarez et al. [9] proposed a neural network model with 1 output and 14 inputs but without

hidden layer. The 14 inputs are the mean and variance of vehicle speed, positive accelera-

tion, negative acceleration, SMJ (Starting Movement Jerk), SBJ (Starting Brake Jerk), CTJ

(Cruising Track Jerk) and EBJ (Ending Brake Jerk). The output of the network is the en-

ergy consumed by the vehicle for the complete trip. The neural network was implemented

by training it for 70% of the data from the dataset DS − I and validated using the remaining

30%.

iv) A deep learning based CNN model proposed by Modi et al. [22] was used for comparing the

results of the proposed technique. The CNN model proposed by Modi et al. takes three inputs

namely, road elevation, vehicle speed and tractive effort and give power consumption as the

output. The tractive effort was calculated using the Eq. (10):
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teff = fad + frr + fhc + fla + fwa (10)

where teff , fad, frr, fhc, fla and fwa represent the tractive effort, the force required to over-

come aerodynamic drag, the rolling resistance force, the gravitational force which plays its

role when road elevation changes, the opposing force because of linear acceleration and the

inertial force acting on the rotating parts of the vehicle. The CNN model was trained using

the 70% of the data from the dataset DS − I and validated using the rest.

A comparison of estimated energy consumption for UDDS drive cycle under different con-

ditions of the proposed approach and four of the existing techniques, discussed above, has been

presented in the Figures 6 and 7. Figure 6 show the comparison result when the initial SOC of

battery was 30% whereas Figure 7 show the results with initial SOC of 70%. In both the figures

there are two rows and two columns, where each row depicts the results at different grade profile

and each column show the results at different environment temperature. Each subfigure show the

comparison results with four combination of two different air speed profiles (AS 1 and AS 2) and

two different auxiliary load profiles (AL 1 and AL 2). The two different grade profiles, air speed

profiles and auxiliary load profiles used for the comparison results shown in Figures 6 and 7 are

given in Table 1. From the figures, it can be observed that the proposed approach gave consistently

better energy consumption estimate than the existing techniques under all the different conditions.

As the technique proposed by Galvin [20], considered speed and acceleration only to estimate the

power/energy consumption it is justifiable for the results to deviate from actual when other fac-

tors come into play. Similarly, Yang et al. [19] in their proposed technique does not consider the

effect of environment temperature and initial SOC on energy consumption and hence the results

are not accurate but their technique performed much better than Galvin’s technique. The neural

network, proposed by Alvarez et al. [9], was not able to accurately predict the result because of

two main reasons, first it has no hidden layer due to which it was not able to learn the non-linearity

among the influencing factors and second only three parameters namely, speed, acceleration and

jerk were taken as input and the influence of other factors was not considered. The deep learning

based CNN model, proposed by Modi et al. [22], gave consistently lower estimates than the actual

energy consumption. The main reason for this is that CNN model developed by Modi et al. does

not take into account the effect of varying auxiliary load, air speed, environment temperature and

initial SOC of battery while estimating EVs energy consumption.

To generalize the comparison results, Table 2 show the results for different performance met-

rics for the existing and proposed approach. The different performance metrics are Mean Absolute

Energy Deviation (MAEdev), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),

Correlation (Corr) and Mean Prediction Time per Drive Cycle (MPTDC). MAEdev can be

obtained using the following equation:

MAEdev =

∑n

i=1
| Ei

act − Ei
est |

n
(11)

where Ei
act and Ei

est represent the actual and estimated energy consumption for ith drive cycle

and n represent total number of drive cycles under consideration. RMSE, MAE and Corr are
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same as defined in Section 4.1. MPTDC is the average time an approach takes to predict the

power consumption by the EV for a given drive cycle. It does not include the training time. It

can be observed from the Table 2 that the proposed approach gave very reliable results than the

existing techniques. The proposed approach has lowest MAEdev , RMSE, MAE of 0.14, 0.97

and 0.50, respectively and highest Corr of 0.997 for dataset DS − Ival in comparison to the other

existing techniques. Similar behaviour can be observed for dataset DS − II . As dataset DS − II
contains data recorded for road grade of 0% and no external wind, due to this all the approaches

performed better on DS − II as compared to DS − Ival. The values of MAE, RMSE and

Corr are not available for [9], as the NN proposed in it provide total energy consumed as output

for the whole trip instead of providing instantaneous power consumption. Due to this, using NN

model it is difficult to provide instructions in real-time to the driver based on the current power

consumption. Also, there are number of influencing parameters (like initial SOC of battery, wind

speed and environmental temperature etc.) that need to be considered along with the parameters

considered in [9, 19, 20, 22]. Due to this, the proposed technique gave reliable estimates even

when these parameters come into play. The proposed technique provides very good results but

it takes more time as compared to the existing techniques which can be seen by the values of

the fifth metric MPTDC, provided in the Table 2. The proposed technique takes more time to

predict results because it require a lot of computation in the PCE module and Fine Tuner module.

However, the objective of this work is to develop a technique which can provide accurate results

in comparison to other existing techniques. As the results presented in Table 2, are computed

using system with 8 GB RAM and Intel i5 Processor, the real time performance can be achieved

by converting the proposed technique into TensorFlow Lite format and execute on Odroid boards

with Movidius sticks or Google Coral boards.

Table 2: Comparison with existing techniques using different performance metrics

Approach
MAEdev RMSE MAE Corr MPTDC

DS − Ival DS − II DS − Ival DS − II DS − Ival DS − II DS − Ival DS − II (in sec)

Yang et al. [19] 2.30 1.98 8.90 3.78 4.73 2.28 0.884 0.961 1.97 ×10−3

Galvin [20] 6.77 2.75 13.79 4.04 8.64 2.64 0.377 0.970 3.47 ×10
−4

Alvarez et al. [9] 4.68 2.15 NA NA NA NA NA NA 1.14 ×10−2

Modi et al. [22] 4.15 1.82 7.98 2.61 5.33 1.96 0.948 0.977 1.76

Proposed CNN-BDT Model 0.14 0.08 0.97 0.74 0.50 0.41 0.997 0.998 2.10 ×10−1

Values in bold represent the best ones and NA means not applicable

4.3. Statistical Analysis

To further validate the conclusion that the proposed approach is better than existing techniques,

statistical analysis using two sample t-test has also been performed between the results of proposed

approach and other existing techniques i.e. proposed approach with Galvin [20], proposed ap-

proach with Yang et al. [19] and so on. For this, the 10 partitions used for validating the proposed

approach during 10-cross validation were used and results were obtained for these partitions us-

ing existing techniques. So, for each existing technique MAEdev , RMSE and other performance

metrics were calculated for the results for each of the 10 partitions. Using these observations an

analysis was performed by taking an assumption that with the significance level of α = 0.05 the
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populations have equal variances. Population means difference as zero was taken as the null hy-

pothesis. Under the above null hypothesis, two sample t-test was performed and Table 3 shows

the results obtained. From the table, it can be seen that the values of t-critical are less than the

values of t-stat for each pair of techniques and also the p-values are less than the significance level

α = 0.05. This implies that means of the populations differ significantly and hence null hypothe-

sis is rejected. As the mean of the MAEdev and RMSE values is less for the proposed approach

than other existing techniques thus, it can be concluded that the proposed approach provide better

results and the difference in results is statistically significant.

Table 3: Results of two sample t-test for statistical analysis

Galvin [20] Yang et al. [19] Alvarez et al. [9] Modi et al. [22] Proposed Approach

Results of t-test on MAEdev from 10-fold cross validation

Observations 10 10 10 10 10

Mean 6.772 2.306 4.679 4.155 0.139

Variance 29.660 4.104 16.258 4.710 0.012

Hypothetical mean difference 0 0 0 0 -

Pooled Variance 15.045 2.087 8.249 2.394 -

Degree of freedom 18 18 18 18 -

tâĂŞcritical one tail 1.734 1.734 1.734 1.734 -

P (T ≤ t) one tail 0 0 0 0 -

t-stat 10.261 9.002 9.485 15.572 -

Results of t-test on RMSE from 10-fold cross validation

Observations 10 10 - 10 10

Mean 13.796 8.900 - 7.988 0.975

Variance 37.372 24.303 - 1.255 0.047

Hypothetical mean difference 0 0 - 0 -

Pooled Variance 20.788 13.528 - 0.724 -

Degree of freedom 18 18 - 18 -

tâĂŞcritical one tail 1.734 1.734 - 1.734 -

P (T ≤ t) one tail 3.159 ×10−6 6.902 ×10−5 - 0 -

t-stat 6.287 4.817 - 18.433 -

5. Conclusion

In this paper, a hybrid approach using CNN and BDT has been developed to provide the EV

drivers with accurate energy consumption estimates in real-time. The proposed approach consider

the effect of seven factors namely, vehicle speed, acceleration, air speed, road elevation, auxil-

iary loads, environment temperature and initial battery’s SOC. Detailed elaboration of developing,

training and testing the proposed approach has been provided. The performance of the approach

has been validated by comparing it with number of state-of-the-art techniques. Following points

include the main conclusions:

i) The proposed CNN-BDT approach can provide energy consumption estimates in real-time.

Hence, it can be used to guide the driver in real-time and decrease his/her range anxiety.

ii) The proposed approach does not require any vehicle specific parameters, like battery’s internal

resistance, motor’s efficiency curve, battery’s descharging/charging curve etc., for estimating
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the energy consumption. Due to this, the proposed approach can be easily generalized for any

other electric vehicle.

iii) The accuracy of the proposed approach has been validated by comparing the proposed ap-

proach with other existing techniques. The comparison results show that proposed approach

can estimate the energy consumption with least mean absolute energy deviation of 0.14 and

highest correlation of 0.997.

iv) From the comparison results, it can be concluded that the proposed approach, unlike the

previous existing techniques, can learn the non-linear relationship of different parameters

quite accurately.

v) The CNN-BDT model can be converted to TensorFlow Lite format and then can easily run on

different microcontrollers or can be deployed to vehicular embedded system.
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(i) Results with grade profile 3 and

temperature 35
oC

Figure 3: Energy consumption estimation for UDDS drive cycle at initial SOC of 30% under different conditions.

Legend: Actual (Solid Line) / Predicted (Dashed Line) energy consumption under: air speed profile 1 with auxiliary

load profile 1 ( ) / auxiliary load profile 2 ( ), air speed profile 2 with auxiliary load profile 1 ( ) / auxiliary load

profile 2 ( ).
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(h) Results with grade profile 3

and temperature 15
oC

5 10 15 20
Time (min)

-10

-8

-6

-4

-2

0

E
ne

rg
y 

C
on

su
m

pt
io

n 
(M

J)

(i) Results with grade profile 3 and

temperature 35
oC

Figure 4: Energy consumption estimation for UDDS drive cycle at initial SOC of 70% under different conditions.

Legend: Actual (Solid Line) / Predicted (Dashed Line) energy consumption under: air speed profile 1 with auxiliary

load profile 1 ( ) / auxiliary load profile 2 ( ), air speed profile 2 with auxiliary load profile 1 ( ) / auxiliary load

profile 2 ( ).
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Figure 5: Results of repeated 10-fold cross validation.
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Figure 6: Energy consumption prediction comparison of the proposed methodology with other existing techniques

for UDDS drive cycle at initial SOC of 30% under different conditions of two road grade profile, two environmental

temperatures, two air speed profiles (AS 1 and AS 2) and two auxiliary loads profiles (AL 1 and AL 2). Legend:

Energy consumption: ( ) Galvin [20], ( ) Yang et al. [19], ( ) Alvarez et al. [9], ( ) Modi et al. [22], ( ) Proposed

Approach, ( ) Actual.
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Figure 7: Energy consumption prediction comparison of the proposed methodology with other existing techniques

for UDDS drive cycle at initial SOC of 70% under different conditions of two road grade profile, two environmental

temperatures, two air speed profiles (AS 1 and AS 2) and two auxiliary loads profiles (AL 1 and AL 2). Legend:

Energy consumption: ( ) Galvin [20], ( ) Yang et al. [19], ( ) Alvarez et al. [9], ( ) Modi et al. [22], ( ) Proposed

Approach, ( ) Actual.
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