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Abstract. The coverage problem in wireless sensor networks deals with
the problem of covering a region or parts of it with sensors. In this
paper, we address the problem of covering a set of line segments in sensor
networks. A line segment £ is said to be covered if it intersects the sensing
regions of at least one sensor distributed in that region. We show that
the problem of finding the minimum number of sensors needed to cover
each member in a given set of line segments in a rectangular area is
NP-hard. Next, we propose a constant factor approximation algorithm
for the problem of covering a set of axis-parallel line segments. We also
show that a PTAS exists for this problem.

1 Introduction

A wireless sensor network (WSN) consists of a number of tiny devices equipped
with sensors to sense one or more parameters such as temperature, speed etc.
Due to the limited battery power, each sensor node can do a limited amount of
computation, and can communicate with only nearby devices. Each sensor has
a sensing range within which it can sense the parameter, and a communication
range over which it can communicate with other devices. Sensor networks have
been used in different applications such as environment monitoring, intruder
detection, target tracking etc.

The coverage problem is an important problem in many wireless sensor network
applications. Here, a set of sensors are used for surveillance (or monitoring) of an
area. Various definitions of coverage may be considered depending on the target
application. For example, the k-coverage problem requires that every point in
the area be in the sensing range of at least k sensors [9]. In the target k-coverage
problem, a set of points in the plane are marked as target points; the objective
is to place sensors such that every target point is in the sensing zone of at
least k sensors. Other definitions of coverage include area coverage [15], barrier
coverage [10], breach and support paths [I1] etc. Several works provide algorithms
for achieving various types of coverages in sensor networks by suitable placement

of the sensors [QITOITTITHITY].

In many applications, it is required that a set of line segments in a region be
covered with sensors. Examples of such applications can be monitoring activities
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in the corridors of a building, or in the road networks of a region. A line segment
¢ is said to be k-covered if ¢ intersects the sensing range of at least k sensors.
Thus, given a set of line segments in the plane, it may be required to place a set
of sensors to ensure that all the line segments are k-covered. In this paper, we
consider the following variation of the problem.

Line-Covering problem: Given a set L of n arbitrarily oriented line segments
in a bounded rectangular region R, find the minimum number of sensors
(with equal sensing range p > 0) needed, and their positions such that each
line segment in L passes through the sensing region of at least one sensor.

We prove that the decision version of the Line-Covering problem is NP-hard, and
present a constant factor approximation algorithm for a special case where the
line segments in L are all axis-parallel (horizontal or vertical). We also show that
the Line-Covering problem for axis-parallel line segments admits a PTAS. Note
that, there are several practical situations, such as surveillance of corridors in a
floor, where covering axis-parallel line segments with sensors is indeed necessary.

A variation of line coverage problem, called track coverage problem is addressed
by Baumgartner et al. [3], where the objective is to place a set of n sensors in a
rectangular region of interest such that a measure of the set of tracks detected
by at least k sensors is maximized. The measure may be the width of track, or
the angle of a cone originated from one end-point of the track, where the central
lines of the tracks are given. However, to the best of our knowledge, this problem
we are considering here, is not addressed in the existing literature.

2 Related works

Given a deployment of sensors in a bounded region, several algorithms have been
proposed to compute different types of coverage problems. Huang and Tseng [9]
proposed an algorithm for testing whether every point in an area is k-covered.
Xing et al. [19] gave an algorithm to verify whether an area is connected-covered
by a set of k sensors. The k-barrier coverage problem was defined by Kumar et
al. [10]. They also proposed an efficient algorithm for testing whether a barrier is
k-covered or not. The problems of finding maximal breach and maximal support
paths were addressed by Megerian et al. [I1].

The problem of efficient deployment of sensors for efficiently covering an area
is also studied in the literature. Given a fixed number of sensors and an area
with obstacles, Wu et al. [18] proposed a centralized and deterministic sensor
deployment strategy in the obstacle free regions for maximizing the area covered
by the deployed sensors. Agnetis et al. [I] addressed the problem of deploying
sensors with minimum cost under a defined cost model for full surveillance, where
every point on each line segment is covered by at least one sensor. They provided
a polynomial time algorithm for the case where all sensors have the same sensing
range. They also provided a branch-and-bound based heuristic for some special
cases where the sensing ranges of the sensors are different. Clouqueur et al. [8]
presented a deployment strategy to find a minimum ezposure path for a moving
target with minimum deployment cost, where each sensor has a deployment cost



which depends on its range. The ezposure of a path with respect to a target
through the sensor field is measured in terms of the probability that the target
will be detected by some sensor along that path. Bai et al. [2] proposed an optimal
deployment strategy of sensor nodes such that these can cover the entire region
as well as the communication network becomes biconnected.

A sizeable literature exists on maintaining different types of coverage in wireless
sensor networks by moving one or more sensors after the initial deployment. After
an initial random deployment, here the objective is to maintain the coverage by
moving minimum number of sensors [20]. Sometimes sensor(s) may need to be
moved due to the failure of other sensors. Sekhar et al. [12] proposed a dynamic
coverage maintenance scheme. In their work, if a coverage hole is created due
to the failure of a sensor, only the neighbors of the dead sensor are migrated
to cover that hole with minimum total energy consumption. There are several
other situations where the sensors may move [7JI7/13].

3 Preliminaries

We assume that the sensors are points in the plane. The sensing range of a sensor
s is a real number p(s) (say), such that it can sense inside a circular region of
radius p(s). We assume that the sensing range of all the deployed sensors are
the same, and is equal to p. A line £ is said to be covered by a sensor s if there is
at least one point on ¢ whose distance from s is less than or equal to p. In other
words, £ has intersection with the circle of radius p centered at s. Figure [[i(a)
shows an example in which the lines ¢; and f3 are covered by 3 sensors while
the line ¢y is covered by 2 sensors.

P

(b)

Fig. 1. (a) Covering line segments by sensors, (b) hippodrome of a line segment
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Given a line segment £ = [u, v] and a positive real p, the hippodrome H (¢, p) is
the union of all the points that are at distance less than or equal to p from some



point in ¢ (see Figure[I(b)). A line segment ¢ will be covered by a sensor s with
sensing range p if and only if s is placed inside the hippodrome H (¢, p). We need
the following definition for proving the NP-hardness result for the Line-Covering
problem.

Definition 1. A planar graph G = (V, E) is said to be a cubic planar graph if
the degree of each vertex v € V' is at most three.

A planar grid embedding of a graph is an embedding of the graph in a grid such
that the vertices of the graph are mapped to some grid points, and the edges
of the graph are mapped to non-intersecting grid paths. Figure [J(a) shows a
complete graph of four vertices, and Figure[2(b) shows a planar grid embedding
of it. In any planar grid embedding of a planar graph, one of the metrics of
interest is the maximum number of bends along an edge in the embedding. The
planar grid embedding of any cubic planar graph can be obtained in linear time
[14]. Moreover, this algorithm ensures that the number of bends on each edge of
the embedding is at most four. Thus, we have the following result:

Result 1 The number of line segments required to draw an edge in the planar
grid embedding of a cubic planar graph is at most five.
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Fig.2. (a) A cubic planar graph G, (b) its planar grid embedding &, (c¢) its
augmented planar grid embedding &,,4, and (d) hippodromes of the edges in
gaug



4 Complexity results of Line-Covering problem

In this section, we prove that the decision version of the Line-Covering problem
is NP-complete. We propose a polynomial time reduction from the vertex cover
problem of a cubic planar graph to an instance of the Line-Covering problem.
Needless to mention that the vertex cover problem for a cubic planar graph is
NP-complete [I6]. We first give a polynomial-time reduction for obtaining an
augmented planar grid embedding of a cubic planar graph by using the planar
grid embedding result of [I4]. Next, we show that the original cubic planar graph
G = (V,E) has a vertex cover of size 7 if and only if all the line segments in
the embedding are covered by 7+ 2|E| sensors of a suitably chosen range p. Our
proof is motivated by the work of Chabert and Lorca [5].

4.1 Polynomial time reduction

Let G = (V, E) be a connected cubic planar graph. We can generate a planar
grid embedding £ of G in linear time [14]. Now, we execute the following two
steps on £ to obtain an augmented planar grid embedding Eq.q of the graph G.

Step 1: Add a new vertex at every bend of the embedding £. Thus, each edge
in the augmented embedding is either a horizontal or a vertical line segment.
These newly added vertices in £,y Were not present in the vertex set V.

Step 2: For every edge (u,v) € E, identify the shortest path in £,,y between u
and v. If the number of edges («) in this path is less than five, then further
augment Eq,,y by adding (5 — «) vertices on any edge of that path to make
the path length equal to five.

Figure [2(c) shows the augmented planar grid embedding of the planar graph G
in Figure 2(a). Each node in V is colored with black, and each node added in
augmentation steps 1 and 2 is colored with white. Each black node has degree 3
and each white node has degree 2. Each edge in E corresponds to a chain of 5
edges in Eqyy. Thus, the number of edges in 44 is exactly 5| E|.

Observe that, the embedding &,,4 contains both horizontal and vertical edges,
and the grid size is polynomial in the number of vertices in the cubic planar graph
G. Let d be the length of the smallest edge in the embedding &,.4y. We choose
a range p < % for the covering problem. This ensures that the hippodromes
H(e,p) and H(¢, p) for a pair of edges e, e’ € 44y do not intersect unless they
share a common vertex (see Figure[2(d)). All the edges sharing a vertex v € Equg
can be covered by placing a sensor anywhere in the intersection region of the
hippodromes corresponding to these edges. Surely the vertex v will lie in this
region, and such a placement of sensor will be referred to as placing a sensor at
vertex v.

Lemma 1. Given a positive integer 7 < |V/|, the planar graph G has a vertex
cover of size T if and only if the edges of the corresponding 4,9 can be covered
using (T + 2|E|) sensors.



Proof (= ). Let {v],v},...,v.} be a vertex cover of size 7 in the graph G. Deploy
one sensor at the vertex corresponding to v} in gy, for each i =1,2,...,7. Now,
consider any edge e € E. Among the five edges in €444 corresponding to the edge
e € E, at least one edge is already covered by one of these 7 sensors. To cover
the remaining four edges, only two sensors are sufficient, by placing one sensor
in every alternate vertex in the path. Hence, a total of (7 + 2|E|) sensors are
sufficient to cover all line segments in £.

[<] Let there be a deployment of (7 + 2|E|) sensors such that each edge of
Eaug 1s covered by at least one sensor. Now, consider any edge e = (u,v) € FE,
and its corresponding 5-edge path p(u,v) = u — v1 = vo = v3 = v4 — v in
Eaug- To cover all the five edges, at least 2 sensors must be placed at two of
the four intermediate vertices in the path. Therefore, at least 2|F| sensors are
used to cover the intermediate three line segments corresponding to |E| edges
in the cubic planar graph. Also, this placement cannot cover both of the edges
(u,v1) and (v4,v) of Equg at the same time, for each edge (u,v) € E. By the
assumption, all these edges are also covered with 7 sensors, and surely these
sensors are placed at black vertices. This implies, we have a total of T vertices
in G that covers all the edges in G. a

Given a deployment of sensors, verifying whether all lines are covered or not can
be done in polynomial time. Thus, the covering decision problem for axis-parallel
line segments is in NP. This leads to the following result:

Lemma 2. Given a set of axis-parallel line segments, a real number p, an integer
T, testing whether there exists a deployment of T sensors each of sensing range
p, such that each member in L is covered by at least one sensor, is NP-complete.

Since the problem of covering axis-parallel line segments is a special case of the
Line-Covering problem for arbitrary line segments, the following theorem holds.

Theorem 1. The decision version of the Line-Covering problem is NP-complete.

5 Approximation algorithm for covering axis-parallel line
segments

Here we present a 12-factor approximation algorithm for a special case of the
Line-Covering problem, where the line segments inside the rectangular region R
are all axis-parallel. Following the method of [4], we first describe a 6-approximation
algorithm for the case where the line segments are all horizontal. It is designed
using the 2-factor approximation algorithm for covering the horizontal line seg-
ments in a strip of width v/3p as stated below. This concept is then extended to
get the 12-factor approximation algorithm when the line segments can be either
horizontal or vertical.

We partition the entire region into horizontal strips S1, So, ..., S, each of width
V3p (see FigureBl(a)). Thus, t = [\%p], where h is the height of the rectangular



Fig. 3. (a) Partitioning the area into horizontal strips, (b) processing of ¢, (c)
covering the line segments in L;

region R. Let L; = {¢1 = (u1,v1),l2 = (u2,v2),...,4. = (u,v,)} be the line
segments in a horizontal strip S;, such that v; < vy < w3z < ... < v, (i.e., the line
segments are sorted in increasing order of their right endpoints). We first choose
1. Let L} denote the set of line segments in S; whose hippodromes intersect the
hippodrome H ({1, p). In other words, each line segment ¢ € L} has at least one
point which is at a distance at most 2p from v1. Thus, all the line segments in L}
intersect a rectangle C of size 2p x v/3p, inside the strip S; with left boundary
at v (see Figure B(b)). If the hippodromes H({, p) for all the line segments
¢ € L} U {f,} share a common region, a sensor can be placed in that region to
cover all the line segments in L} U{¢;}. However, such a favorable situation may
not happen as shown in Figure Ba). But, a rectangle of size 2p x v/3p can be
covered by only two circles of radius p as shown in Figure Bf(c). Thus, in order
to cover all the line segments in L} U {{1}, one sensor is always necessary, and
two sensors are always sufficient. We include the centers of those two circles in
the set @;, the sensor positions for covering the horizontal line segments in the
StI‘ip Sl

Next, we delete all the line segments in L} U {¢;}, and repeat the same steps
with the remaining set of line segments in this strip. In each step, we add two
sensor positions in @;. The process is repeated until all the members in L;
are exhausted. If Z; is the number of iterations of the above steps required for
processing the strip S;, then |Q;| = 27Z; is a loose upper bound and Z; is a loose
lower bound on the number of sensors required to cover the line segments in the
StI‘ip Sl

Lemma 3. If t denotes the number of horizontal strips of width \/3p in the

region R, then

(a) U‘;:le s a O-factor approximation solution for covering all the horizontal
line segments in R, and

(b) %22:1 Z; is a loose lower bound on the number of sensors required for
covering all the horizontal line segments in R.

Proof. Let Q" = U‘;-:le denote the set of sensors used to cover all the horizontal
line segments by our algorithm. We use Q;- to denote the optimum set of sensors



to cover the line segments in L; only, and Q] to denote the set of sensors in the
optimum set of sensors for covering all the horizontal line segments in R, that
are placed in the strip Sj. It is already mentioned that [Q;| < 2|Q’|. Notice that,
in order to cover the line segments in L; one needs to place sensors in S;_1, S
and Sj1. Thus, Q)] < |Q5_4| + Q] + [Q}44]- Summing over all j, we have
23:1 |Q;| < 32;:1 |Q;| Thus, 23:1 Q51 < 62;:1 |Q;|

The lower bound result follows from the facts that (i) a circle of radius p centered
at the center of a 2p x v/3p box in the strip S; does not cover any horizontal line
segment in Uf_; L; \ {L;—1 UL; U Lj+1}, and (ii) Z; is the lower bound on the
number of sensors required to cover all the horizontal line segments in .S;. a

The same technique can be adopted for covering all the vertical line segments in
the region R, and Q" is the set of sensor positions for covering the vertical line
segments in R, reported by our algorithm. The following theorem summarizes
the result in this section.

Theorem 2. |Q" U Q¥| < 12 x OPT, where OPT is the minimum number
of sensors required to cover all the azis-parallel line segments in R. The time
complexity of our algorithm is O(nlogn), where n is the number of line segments
m R.

Proof. Let Q* denote the optimum set of sensors required to cover all the line
segments in R, such that |Q*| = OPT. Let Q"* and Q* denote the set of
sensors in the optimum solution @Q* such that all the horizontal line segments
are covered by the sensors in Q"*, and all the vertical line segments are covered
by the sensors in QV*. Thus, Q* = Q" U QV*, where Q"* N QV* may not be
empty. Since |Q*| > maz(|Q"*],|Q"*|) and |Q" U QY| < (|Q"| + |Q"]), therefore
Q" U Q" < 2xmax(|Q"],|Q"]) = 2 max(6]Q"*, 6|Q"*|) < 12|Q*|.

The time complexity result follows from the following two facts: (i) placing each
horizontal (resp. vertical) line segment in appropriate strip needs O(ny) (resp.
O(ny,)) time, where ny (resp. n,) is the number of horizontal (resp. vertical)
line segments in R, and (ii) processing the line segments in a horizontal (resp.
vertical) strip takes O(mlogm) time, where m is the number of line segments
in that strip. a

6 PTAS for covering axis parallel line segments

Let H denote the set of hippodromes corresponding to all the horizontal and
vertical line segments in R. Let X = {x¢,x1,x2,... 2y} be a sorted sequence of
distinct real numbers, where ¢ and z,, correspond to the z-coordinates of the
left and right boundaries of the region R, and z;,7 =1,2,...,m — 1 denote the
z-coordinates of the corners of the bounding rectangles of these hippodromes.
We need to find a minimum size set P of points, called the minimum piercing
set for H, such that each hippodrome in H contains at least one point in P. In



other words, if we position one sensor in each point of P, each line segment in
the region R will be covered by at least one sensor.

We show the existence of a PTAS for problem of covering axis-parallel line
segments by (i) proposing an algorithm for computing a piercing set for H of
size (14 €) x OPT, where OPT is the size of the optimum piercing set for H,
and € is a desired small real number, and (ii) proving the time complexity of the
algorithm to be a polynomial function of n, where the degree of the polynomial
may depend on ¢, assuming that the sensing range p is not too small compared
to the floor dimensions. In particular, we assume that 2 is a constant, where h

is the height of R. Our algorithm uses the idea from [G].

T

Fig. 4. (a) Splitting of R into vertical strips, (b) set of hippodromes intersected
by a vertical line, and (c) demonstration of covering the hippodromes intersected
by a vertical line by 2t sensors

Lemma 4. If the region R has t number of horizontal strips of width \/3p, then
a set of 2t points always pierce all the hippodromes that are intersected by any
vertical line inside R.

Proof. In Figure [(b), a situation is depicted where a set of hippodromes are
intersected by a vertical line A. All these hippodromes can be pierced by placing
the points at the centers of ¢ pairs of circles (of radius p) shown in Figure [{c),
where t is the number of horizontal strips of width v/3p. Since h is the height of

_
R t= & O

6.1 Algorithm

We partition the region R by drawing vertical lines at xo,x1,Z2,...,Zm (see
Figure Ml(a)). Let P be a set of points that accumulates the piercing points
obtained by this algorithm. We fix a vertical line ¢ at xy.

For each ¢ = 1,2,...m, we execute the following two steps:



Step 1: Let © denote the subset of hippodromes that are intersected by the vertical
line x = x;, and
©’ be the set of hippodromes which are properly inside the strip defined by
the vertical lines z = £ and x = z;. None of these hippodromes intersect the
vertical lines z = ¢ and z = z;

Step 2: Compute the lower bound % on the number of sensors required to pierce all
the hippodromes in ©" using Lemma [B(b). If ¢ is greater than or equal to
some constant T (decided a priori) or ¢ = m, then

(a) put ¢ in an array I.

(b) Get a set IT of points to pierce the hippodromes in @ using Lemma [4]

(¢) Compute the exact minimum piercing set II’ of @ by an exhaustive
search algorithm discussed in the proof of Lemma

(d) Set P=PUITUII', and ¢ = z;.

Thus, we have computed the optimal piercing set for the hippodromes in each
vertical strip defined by the vertical lines x = z;;_1) and © = =z, for j =
1,2,... 1.

Lemma 5. If n; = |0)| for the vertical strip V; bounded by two vertical lines

r = xyj—1 and x = x[;, then the time complexity of finding the minimum

piercing set (of points) for the set of hippodromes © is O(n§4T+4t_l), where
- _h

t= T

Proof. Let @ be the set of intersection points of the hippodromes in (9;-. Since
n; = |04], |Q] = O(n3) in the worst case, and by a brute-force method, these
can be found in O(n?) time. These points may be used as piercing points.

Let us denote by P 3 the smallest piercing set of the set of hippodromes that
lie properly inside = z, and = = xg, and F, denote the smallest piercing set
of the set of hippodromes intersected by the vertical line x = z,,.

Let us consider the vertical strip V; defined by the vertical lines + = z, and
x = xg, where a = I[j — 1] and = I[j]. Let vy =5 — 1.

Surely, | P, 5| <[P | + [Py <[P, | + 2t (by Lemmal). If our approximation
algorithm returns a lower bound T for the size of the solution for the set of
hippodromes O, we have |P, .| < 127 — 1. Thus the number of points in the
optimum piercing set for O is [P, 5| < 127" — 1+ 2t. So, we need to consider all
possible subsets of size less than or equal to | P}, 5| (= p say) from Q. The number
of such subsets is (Igl) = O(nf“) in the worst case. Since, for each subset, we need
to check whether it pierces all the hippodromes in 9;-, the overall complexity
of getting the smallest piercing set of H is O(nf’”l), where p < 127 — 1 + 2¢.
Thus the lemma follows. O

We now show that for a given set of n axis-parallel line segments, the algorithm
COVER-PTAS produces a (1 + ¢)-factor approximation result.



Observe that, we have computed the optimum cover solution in each vertical strip
defined by the elements in array I. We have also shown that the hippodromes
intersecting the vertical lines x = x(;),i € I can be covered by a set of 2t x (|| —
1) sensors, where t = \% Actually, our algorithm COVER-PTAS produces a

0
solution of size OPT' = S [P/, 1|+ 2t x (|T) = 1). If OPT is the minimum
number of sensors required to cover the line segments in L, then

[7]-1 |I]—1
Y APl SOPT < Y|P | +2t x ([T| - 1) = OPT".
i=0 i=0

By Step 3(b) of our algorithm | P/, , ;| > T Since the size of the optimum solution
is OPT, the number of disjoint strips [I] — 1 < 12271,

Thus, [OPT’| < |OPT| + 2t x (12F11) = |OPT| x (1 + 2). For a given ¢, we

. . . 2t
may get an (1 4 ¢)-factor approximation result by choosing T' = =.

In order to compute the array I, we have to execute the 12-factor approx-
imation algorithm 2n times. This needs O(n?logn) time in the worst case.
The time complexity for computing P/, , for all i = 1,2,...,|I| — 1 needs

O(Zyz‘al n2 41 which may be O(n?*7+4-1) in the worst case. Thus, we
have the following result:

Theorem 3. Given a set of n axis-parallel line segments, the algorithm COVER-
PTAS produces a solution (placement of sensors for covering all the line seg-
ments) of size (1+€)OPT in time O(n?logn +nE T4 where OPT is the
size of the optimum solution, and t = —— = the number of horizontal strips

V3p
required to partition the region R of width /3p, and T = %

7 PTAS for 1-line covering line segments of any arbitrary
orientation

There is a given a set of line segments L = (g, l1, . . .l;;) in a bounded rectangular
region R. The line segments are arbitrarily oriented and whose lengths are at
most some constant ¢ times of the sensors’ sensing range s,. (i.e length(l;) < ¢x s,
for i = 1 to n). Let H denote the set of hippodromes corresponding to the line
segments. We need to find a minimum size set P of points, called the minimum
piercing set for H, such that each hippodrome in H contains at least one point
in P. In other words, if we position one sensor in each point of P, each line
segment in the region R will be covered by at least one sensor. We now propose
an algorithm for computing a piercing set for H, and show that it produces a
solution of size (1+ 1) x |OPT|, where OPT is the minimum piercing set for H,
and k is a desired integer number.

Algorithm 1-COVER-PTAS
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Fig. 5. Splitting of R into horizontal and vertical strips

. Initialize the piercing set P = ().
. Partition the region R by drawing horizontal and vertical strips of width 2s,

in the interval of 2s,(c 4+ 1). Let the region R be subdivided into M x N
square blocks after placing the strips. (see Figure [l). The horizontal strips
are numbered from bottom to top (0, 1,...M — 1) and the vertical strips are
numbered from left to right (0,1,...N —1).

. Group the set of the vertical strips into k(> 1) disjoint subgroups (V STy,

VSTy,...VSTi_1). Subgroup V. ST; contains vertical strips whose indices
are (4,1 + k,i+ 2k,...).

. Let s; denote the optimum number of sensors required to cover the line

segments that intersect vertical strip i.

. The set of line segments that intersect the vertical strips are also parti-

tioned into k disjoint subsets (LSp, LS, ... LSk—1). All the line segments in
LS; must intersect one and only one vertical strip in V.ST;. Hence, the line
segments in LS; can be covered optimally using OPT; = (s; U $j4x U ...)
Sensors.

. Select a t among o to k — 1 for which |OPT}| is minimum.
. Set P = OPT,.

. Remove the set of line segments in LS;.

. The region R is subdivided into small subregions (R, Ra, .

..) by the vertical
strips in V.ST;.

The remaining line segments L \ LS; are fully inside these subregions.



11. For each individual disjoint subregion R;.

(a) Let OPT; denote the minimum number of sensors required to cover the
line segments inside R;.
(b) P=PUOPT,.

Lemma 6. Let OPT denote the minimum-size set of sensors which covers all

the line segments in L then there exists a subgroup LSy which can be covered
|OPT|
k

using at most $ensors.

Proof. Since OPT covers all the line segments in L; therefore, it also covers
all the line segments in L,s = (LSo U LSy U...LSk_1). As the hippodromes
corresponding to the line segments between any two subset LS; and LS; are
disjoint where ¢ and j are in between i = 0 to (k — 1) and ¢ # j. There-
fore, (JOPTy| + |OPTy| + ...|OPTy_1|) < |OPT|. Hence, the minimum among
(|OPTy|, |OPTY|,...|OPTy_1]) must be at most %.

Theorem 4. The size of the piercing set P returned by our algorithm is at most
(1+ 1)|OPT].

Proof. After execution of step(9) of our algorithm the whole region is partitioned
into disjoint subregions (R, Ra, . ..). Let (OPTy, OPTy, . ..) denote the optimum
number of sensors used to cover the line segments which are fully inside each
of the individual subregions. The subregions are also separated by the distance
2s,. Therefore, (|OPTy| + |OPTy| + ...) < |OPT|. The number of sensors used
to cover the line segments that intersect the vertical strips in LS; is at most
loPT| Hence, the overall number of sensors used by our algorithm is at most

lOPT| + 9P11 — (1 + L)joPT).

Lemma 7. If B is a square region of size 2s,(c+1) X 2s,(c+1) then the number
of sensors required to cover all the line segments that are totally inside B is at
most 2(c + 1)2. Similarly, the set of line segments that intersect a rectangular
strip of size 2s.(c+2) X 23, can be covered by covering the rectangular strip and

. . 4
it requires at most %(C + 2) sensors.

Proof. The maximum size of the square that is inside a circle of radius s, is

V25, % v/2s,. Therefore, the number of sensors required to fully cover B is
2 2

% = 2(c + 1)2. There is a rectangle of size v/3s, x s, which is totally

inside a circle of radius s,.. Therefore, the number of sensors used to cover the

whole strip is % = %(04_ 2).

Lemma 8. The time needed to cover n; line segments inside subregion R; is
2
O(n%(2Mk7M7k)(c+2)+2Mk(c+l) )

K2



Proof. Let h denote the height of the rectangular region R then the number
of rows M of square boxes is WZH) Therefore, the number of boxes in the
subregion R; is at most k x M. We determine the optimum number of sensors
needed to cover all the line segments in each individual box B; ;. Let m; ; denote
the number of line segments in a box B;; then the time required to evaluate
the optimum number of sensors needed to cover the line segments in B; ; is

O(m4(-c+1)2

i ). Similarly, to cover a set of line segments T; which intersect a ver-

8
tical strip of size 2s,(c + 2) x 2s, can be done in time O(Ti\/g(c+2)).
The overall sensors used to cover all the line segments inside R is divided into
two sub-parts.
(¢) The sensors used to cover line segments optimally inside individual box B; ;
where i € [0, M — 1] and j € [0, N — 1].
(#4) The sensors used to cover line segments optimally that intersects the inter-
mediate strips.
In subregion R;, there are at most (k — 1) vertical strips and (M — 1) hor-
izontal strips. Therefore, number of strips of length 2s,.(c + 2) in a subre-
gion R; is at most (2Mk — M — k) and number of boxes in a subregion is
at most Mk. Hence, the upper bound on the number of sensor needed is T =
%(2Mk — M —k)(c+2) +2Mk(c+ 1)%. If there are n; line segments in region
R; then the time required to find the optimum number of sensors required to

cover the line segments in R; is n. Therefore, the overall time complexity is

4 (2Mk—M—k)(c+2)+2Mk(c+1)2
O(n_\/g( )(c+2)+ (c+1) )'

K2

Lemma 9. The time needed to cover m; line segments that intersect a vertical
L . J5M(c+2)
strips in VST is O(m;” ).

Proof. A vertical strip of height h consists of M strips each of height 2s,.(c 4 2).
Therefore, the upper bound on the number of sensors needed by Lemma [1 is
U=M x* \/ig(c + 2). So, by exhaustive search the time required to cover m; line

<= M (c+2
segments is O(m,;”? (c )).

Theorem 5. The overall run time of the algorithm is O(n%(21\/”67]\4716)(CJFQ)JFQIVUC(CH)2 +

n%M(c-ﬂ))'

Proof. Tt is comprised of two times (i) The time needed to cover individual
subregions optimally and (i) The time needed to cover the line segments that
intersects the vertical strips in V ST} optimally. Hence, the total time is (ng +

2
nF+. )+ mi+mV+..)<nT+nl = O(n%(QMk_M_k)(CHHQMk(CH) +
n% M(c+2))'



8 Discussion and Conclusion

The problem of covering a set of line segments with minimum number of sensors
is introduced in this paper. The problem is proved to be NP-hard. We provided
a 12-factor approximation algorithm for the special case where the line segments
are axis-parallel. We have also shown that a PTAS exists for this problem. These
problems are useful in the context of intruder detection in a restricted area. De-
veloping an efficient algorithm with a good approximation factor for the general
problem, where the line segments are of arbitrary orientation, and each line seg-
ment is covered by at least k sensors. We have also shown a PTAS algorithm for
aribitrary oriented line segments for segments whose length are at most some
constant times of the sensing range. We would also want to improve the ap-
proximation factor of this restricted case (for axis parallel line segments and
kE=1).
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