
Combining Empirical Likelihood and Robust Estimation Methods for Linear
Regression Models
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Abstract
Ordinary least square (OLS), maximum likelihood (ML) and robust methods are the

widely used methods to estimate the parameters of a linear regression model. It is well
known that these methods perform well under some distributional assumptions on error
terms. However, these distributional assumptions on the errors may not be appropriate
for some data sets. In these case, nonparametric methods may be considered to carry on
the regression analysis. Empirical likelihood (EL) method is one of these nonparametric
methods. The EL method maximizes a function, which is multiplication of the unknown
probabilities corresponding to each observation, under some constraints inherited from the
normal equations in OLS estimation method. However, it is well known that the OLS method
has poor performance when there are some outliers in the data. In this paper, we consider
the EL method with robustifyed constraints. The robustification of the constraints is done
by using the robust M estimation methods for regression. We provide a small simulation
study and a real data example to demonstrate the capability of the robust EL method to
handle unusual observations in the data. The simulation and real data results reveal that
robust constraints are needed when heavy tailedness and/or outliers are possible in the data.
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1 Introduction

Consider the linear regression model

Yi = XT
i β + εi for i = 1, 2, . . . , n (1)

where Yi ∈ R is the response variable, Xi ∈ Rk is the k−dimensional vector of the explana-
tory variables, β ∈ Rk is an unknown k−dimensional parameter vector and εi’s are the
independent and identically distributed (iid) errors with E(εi) = 0 and V ar(εi) = σ2. The
regression equation given in (1) can also be written in matrix notation as
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Y = Xβ + ε,

where Xn×k is the design matrix, Y is the response vector, and ε is the vector of εi.
The simplest way to estimate the parameters of a linear regression model is to use the

OLS method. The OLS estimators for β can be obtain by minimizing the following objective
function:

1

n

n∑
i=1

(
Yi −XT

i β
)2
. (2)

Taking the derivative of this function with respect to β and setting to zero gives the following
estimating equation, which is known as the normal equations in the OLS:

1

n

n∑
i=1

X i(Yi −XT
i β) = 0. (3)

From this equation the OLS estimator β̂ is obtained. An unbiased estimator for σ2 can be
obtained using residuals sum of squares after the OLS estimator for the regression parameter
is obtained. The following objective function, which is the negative of the log-likelihood
function under normally distributed error terms,can also be minimized to obtain estimators
for β and σ2.

1

2σ2

n∑
i=1

(Yi −XT
i β)2 + nlogσ. (4)

The ML estimators will be the solutions of the equation given in (3) and the following
equation

1

n

n∑
i=1

((Yi −XT
i β)2 − σ2) = 0. (5)

Note that the OLS and the ML estimators for the regression parameters are the same under
the normality assumption on error.

It is known that the OLS estimators (also the ML estimators) are the minimum vari-
ance unbiased estimates for model parameters under the assumption that εi are normally
distributed. However, these estimators are dramatically effected when fundamental assump-
tions are unfulfilled by the nature of the data. It is well known that OLS estimators (or
ML estimators under the normality assumption) are very sensitive to outliers or departure
from normality ( such as heavy-tailed error). Even a single outlier may drastically affect
the OLS estimators. Therefore, robust regression estimation methods alternatives to the
OLS estimation method have been developed to deal with outliers and/or heavy-tailed er-
ror distributions. In this paper, we will use the M regression estimation method (Huber
(1964)) that will be briefly described in the following paragraph. One can see the books
by Huber(1981) for the details of the robust regression estimation methods, including M
estimation methods.
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The widely used method of robust regression is the M-estimation introduced by Huber
(1964,1973). Since, this class of estimators can be regarded as a generalization of maximum-
likelihood estimation the term M estimation is used. The M estimation method is designed
to minimize an objective function that is less rapidly increasing then the OLS objective
function. This is done using a ρ function that is less rapidly incising than the squared
function. The M estimator for the regression parameter β is obtained by minimizing the
following objective function with respect to β.

1

n

n∑
i=1

ρ(Yi −XT
i β). (6)

The function ρ should be nonnegative, nondecreasing and ρ(0) = 0. The M estimation
method includes OLS, ML and Least absolute deviation (LAD) methods with the choice of
ρ(t) = t2,− log(f(t)), and |t|, respectively. In this minimization problem, contribution of
each observation to the sum is determined by the function ρ in the sense that the observations
with large residuals have small contributions to the sum. Consequently, since the outlying
observation will have small contribution to the sum due to the ρ function they will not
drastically effect the resulting estimator. If ρ is differentiable, differentiating (6) with respect
to β and setting to zero yields the following M estimation equation

1

n

n∑
i=1

ψ(Yi −XT
i β)Xi = 0, (7)

where ψ = ρ′.
Note that in robust statistical analysis, the influence function is one way to measure the

robustness of an estimator and it is desired to have a bounded influence function. In M
estimation method the function ψ determines the shape of the influence function. Therefore,
if ψ is nonincreasing (may be equal to zero beyond some threshold or tend to zero in larger
values of its argument) the corresponding M estimator will have bounded influence function.
In regression M estimation bounded ψ function only controls the large residuals; that is,
the estimator will be resistent to the outliers in y direction. To control the outliers in x-
direction we have to use other robust estimation methods such as generalized M estimation
or MM regression estimation methods. In this paper, we will only combine the regression M
estimation with the EL method and save the others for our next project. In robust statistics
literature several different ρ functions are proposed, but Huber and Tukey (bisquare) ρ
functions are the widely used ones. The Huber ρ and ψ functions are

ρ =

{(
Yi −XT

i β
)2

, |Yi −XT
i β| ≤ k

2k|Yi −XT
i β| − k2 , |Yi −XT

i β| > k

ψ =

{(
Yi −XT

i β
)

, |Yi −XT
i β| ≤ k

sgn
(
Yi −XT

i β
)
k , |Yi −XT

i β| > k

Similarly, The bisquare (Tukey) ρ and ψ functions are
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ρ =


k2

6

(
1−

(
1−

(
Yi−XT

i β

k

)2)3
)

, |Yi −XT
i β| ≤ k

k2

6
, |Yi −XT

i β| > k

ψ =


(

1−
(

Yi−XT
i β

k

))2 (
Yi −XT

i β
)

, |Yi −XT
i β| ≤ k

0 , |Yi −XT
i β| > k

Concerning the estimation of σ2 along with β the following objective function can be
minimized to obtain M estimators for β and σ2 (see Huber and Ronchetti, 2009, Chapter
7.7).

1

n

n∑
i=1

ρ

(
Yi −XT

i β

σ

)
σ + aσ, (8)

Taking the derivative of this objective function and setting to zero yield the following M
estimating equations for β and σ2

1

n

n∑
i=1

ψ

(
Yi −XT

i β

σ

)
X i = 0, (9)

1

n

n∑
i=1

ρ0

(
Yi −XT

i β

σ

)
= a (10)

where ρ0(r) = rψ(r)− ρ(r). a > 0 is added in order to get consistency of the scale estimator
under normality assumption of the error and to get the classical OLS estimator for the
scale when ρ(x) = x2/2. Note that, since throughout this study we are only interested for
estimating the regression parameters we can assume that σ is fixed. This can be done either
by estimating σ beforehand or assuming that it is known, as it is suggested in the book by
Maronna et al. (2006) (Chepters 4.4.1 and4.4.2.).

One can see the books Huber (2009) and Maronna (2006) for further details on M esti-
mators for regression and its properties.

If we do not want to use OLS or robust methods or not want to assume any distribution
for the error terms we can also use nonparametric methods as alternatives to these mentioned
methods for estimation and inference in a linear regression model. One of these nonpara-
metric methods is the EL method which was introduced by Owen(1988). This method is an
alternative to likelihood method when there is no distribution assumption for error terms.
In EL method, it is assumed that each observation has unknown pi probability weight for
i = 1, 2, . . . , n. The aim of the EL method is to estimate the regression parameters by maxi-
mizing an empirical likelihood function defined as the multiplication of these pi s’ , which is
developed modifying nonparametric likelihood ratio function, under some constraints related
to the parameters of interest. However, since the constraints used in EL method (see Section
2) are very similar to the normal equations in OLS or likelihood equations under normally
distributed errors the corresponding estimators will be very sensitive to the non-normality or
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unusual observations (outliers) in data. In this paper, we will carry on EL estimation in re-
gression using robust constraint borrowed from the robust estimation equations described in
previous paragraph. Since, we will combine the M estimation methods with the EL method
we expect that the resulting estimator for the regression parameters will be resistent to
the outliers in y-direction. Simulation study and real data example results show that this
expectation comes true.

Note that the reason we keep 1/n multiplication in all the objective functions and the
estimating equations is to emphasize that each observation equally contributes (1/n) to the
minimization procedure. In the EL method, which will be described in Section 2, this term
will be replaced by an unknown probability pi corresponding to each observation. Therefore,
in empirical likelihood procedure contribution of each observation will be different and this
contributions (probabilities) need to be estimated.

The rest of the paper is organized as follows. In next section, after we briefly describe the
EL method we will move on the EL estimation with robust constraint for linear regression
models. In Section 3 we will provide a small simulation study and a real data example to
illustrate the necessity of robust constraints in EL estimation. The paper is finalized with a
conclusion section.

2 Empirical Likelihood Estimation for the Parameters of a Linear
Regression Model with Robust Constraints

In this section, we will first outline the EL method with classical constraints. Then, we will
move on our proposal that combines the EL estimation method with some robust constraints.

2.1 Empirical Likelihood Estimation

Consider the linear regression model given in equation (1) with the same assumptions given
there. The EL estimators will be the solution of the the following constrained optimization
problem. Specifically, if we are only interested for estimating the regression parameter β the
EL method maximizes the following empirical likelihood function

L(β) =
n∏
i

pi (11)

with respect to pi ≥ 0 and β under the following constraints

n∑
i

pi = 1 (12)

n∑
i

pi
(
Yi −XT

i β
)
Xi = 0 (13)
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where p1, p2, . . . , pn are the probability weights of the observations. Note that the constraint
given in equation (13) is very similar to the normal equation given in (3). The only differ-
ence is the unknown probability weights assigned for each observation. In former equation
each observation has equal probability 1/n, but in later each observation has a different pi
probability and these probabilities are unknown and need to be estimated. Further, if we are
interested for estimating σ2 along with the regression parameters the following constraint,
which is motivated form the equation (5), is added to constrained optimization problem
defined above.

n∑
i

pi[(Yi −XT
i β)2 − σ2] = 0. (14)

The empirical likelihood method can be used estimating parameters, constructing con-
fidence regions, testing statistical hypothesis, etc. Briefly, it is a useful tool for making
statistical inference when it is not too easy to assign a distribution to data. There are sev-
eral remarkable studies on the EL method after it was introduced by Owen (1988, 1990,
1991). In these papers, Owen used the empirical likelihood for constructing confidence re-
gions and estimating parameters of linear regression models. Hall and Scala (1990) studied
on main features of the empirical likelihood, Kolaczyk (1994) adapted it in generalized linear
regression model, Qin and Lawless (1994) combined general estimating equations and the
empirical likelihood, Chen et. all (1993,1994 1996, 2003,2009) handled this method for con-
structing confidence regions, parameter estimation with additional constraints, Newey and
Smith (2004) studied about properties of generalized methods of moments and generalized
empirical likelihood estimators, Bondell and Stefanski (2013) suggested a robust estimator
modified the generalized empirical likelihood. Recently, Ozdemir and Arslan (2017) have
suggested an alternative algorithm to obtain EL estimates using the primal optimization
problem. As we have already pointed out we are proposing to assign robust constraints to
gain robustness.

The estimation of pis and the model parameters β and σ2 can be done by maximizing the
function given in equation (11) under the constraints 12 and 13. For simplicity we assume
that variance is known and consider only estimation of β. Therefore, the EL function
should be jointly maximized with respect to pis and β. One way to handle this constraint
maximization problem is as follows. First, fix the regression parameter vector β and consider
maximizing the log-EL function with respect to [p1, p2, . . . , pn]T under the constraints given
above. This procedure is called as profiled out. Once this is done, the profile likelihood
will be a function of β. Then, we can maximize the profile likelihood to obtain the EL
estimator of β. This problem will be easily handled using Lagrange multiplier method.
Therefore, setting the problem in Lagrangian form, the Lagrange function associated with
this constrained maximization problem is

L(p, β, λ0,λ
T
1 ) =

n∑
i=1

log(pi)− λ0(
n∑

i=1

pi − 1)− nλT
1

(
n∑

i=1

piXi

(
Yi −XT

i β
))

(15)

where p = [p1, p2, . . . , pn]T are the vector of probabilities, and λ0 ∈ R1 and λT
1 ∈ Rp are the
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Lagrange multipliers. Taking the derivatives of equation (15) with respect to each pi, and
setting them to zero yields

pi =
1

n
(
1 + λTXi

(
Yi −XT

i β
)) , (16)

and λ = −nλ1. By using equation (16) in the log-EL function we find

L(β, λ) = −
n∑

i=1

log
(
1 + λTXi

(
Yi −XT

i β
))
− n log n. (17)

For a given β the Lagrange multiplier λ1(β) will be obtained as the solution of the
following minimization problem

λ1(β) = argminλ1 (−L(β,λ1)) . (18)

Note that since this minimization problem will not have an explicit solution numerical meth-
ods should be used to find the minimizer. Now, using this in equation yields the following
function

L(β) = −
n∑

i=1

log
(
1 + λ1(β)TXi

(
Yi −XT

i β
))
− n log n. (19)

Then, this function will be maximized to obtain the EL estimator for the regression coefficient
vector β. That is the EL estimator of β will be

β̂EL = argmaxβL(β). (20)

Again, numerical algorithms will be required to handle this maximization problem. Note that
one can see Owen(1989,2001)or Kitamura (2006) for further details about the computational
issues of the EL method. In the following subsection we will use similar steps to maximize
the EL function under robust constraints.

2.2 Empirical Likelihood Estimation with Robust Constraints

In this subsection we will turn our attention to the EL estimation using robust constraints
instead of the classical constraints. In the EL method the unknown probabilistic weights pi
are assigned for each observation so that each observation will have different contribution to
the estimation procedure. In some sense, this can be considered as a weighting procedure
of the normal equations in terms of probabilities for each observation. However, from our
limited experience we observe that the probabilistic weights are not satisfactorily reduce the
effect of outliers on the estimators. Therefore, extra care should be taken to reduce the
outliers affect on estimation procedure. This can be done by adapting the M estimating
equation given in previous section.

Suppose that we are interested for estimating the regression parameter β. Then, we will
maximize the following EL function
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LEL(β) =
n∏

i=1

pi (21)

under the constraints

n∑
i=1

pi = 1 (22)

and

n∑
i=1

piψ
(
Yi −XT

i β
)
Xi = 0, (23)

where pi ≥ 0. The second constraint can be regarded as robust version of the classical con-
straint related to the regression parameters. Here, ψ function is a nonincreasing function of
the residuals for Huber case and a decreasing function of residuals for Tukey function. Thus,
unusual observations with large residuals will receive small ψ values so that the correspond-
ing observations will not completely ruin the estimation procedure. Further, if we are also
interested for estimating σ2 along with the regression parameters the simultaneous M esti-
mating equations given in equations (9)-(10) can be adapted and used in the maximization
problem instead of the classical constraints for β and σ2 given in equations (13)and (14).
The adaptation of those equations will be done using pi’s instead of using 1/n. However,
since in this paper we are only interested for the regression parameters we will solve the
above maximization problem and not add a robust constraint for σ2.

The robust EL estimator for β will be defined as the value of β that maximizes the
log-EL function under the constraints given in equations (22) and (23). We will again use
the maximization procedure described in previous subsection. In this case, the Lagrange
function will be

L(p, β, λ0,λ
T
1 ) =

n∑
i=1

log(pi)− λ0(
n∑

i=1

pi − 1)− nλT
1

(
n∑

i=1

piψ
(
Yi −XT

i β
)
Xi

)
. (24)

Taking the derivatives of the Lagrange function with respect to pi, λ0 and λ1, setting them
to zero and solving the corresponding first order equations for this maximization problem
yield

pi =
1

n
(
1 + λTψ

(
Yi −XT

i β
)
Xi

) , for i = 1, 2, ..., n, (25)

and λ = −nλ1. Then, using these pis in the log-EL function we get the following objective
function

L(β, λ) = −
n∑

i=1

log
(
1 + λTψ

(
Yi −XT

i β
)
Xi

)
− n log n, (26)
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which is the function of λ and β. Further, for a given regression parameter vector β the
Lagrange multiplier λ can be obtained from the following minimization problem

λ(β) = argminλ −
n∑

i=1

log
(
1 + λTψ

(
Yi −XT

i β
)
Xi

)
− n log n. (27)

Since, the solution of this minimization problem cannot be obtained explicitly, numerical
algorithm should be used to get the solution. Using λ(β), the profile log-EL function will
be

L(β) = −
n∑

i=1

log
(
1 + λ(β)Tψ

(
Yi −XT

i β
)
Xi

)
− n log n. (28)

Then, the robust EL estimator for the regression parameter vector β will be obtained as

β̂REL = argmaxβ (L(β)) . (29)

Again, numerical algorithms are necessary to preform this maximization problem to obtain
the robust EL estimates for the regression parameter vector β.

3 Simulation Study

To evaluate the performance of the proposed robust EL estimation procedure, we conduct a
small simulation study. We compare the classical EL method with the robust EL method (EL
with robust constraints) to estimate the parameters of a linear regression model. We assume
that the error variance is known and only deal with estimating the regression parameters.
We take the sample sizes as n = 30, 50, 100 and the dimensions of the unknown regression
parameter vector as 2, 5, 15. The standard normal distribution (N(0, 1)) and the contami-
nated normal distribution ((0.90)N(0, 1) + (0.10)N(20, 1)) are used as the error distribution
for the regression model. The second error distribution is chosen as to add some outliers in
the data. The regressors are also generated from the standard normal distributions. The
unknown parameter vectors are also determined randomly from a normal distribution with
mean µ and variance τ . The dependent variable is generated using the regression model
given in equation (1). The MSE values and the relative efficiency of estimators with respect
to the OLS are calculated to compare the performance of the considered estimators. All the
simulation scenarios are repeated 100 times. The relative efficiencies are calculated using
the formula

RE =

∑100
j=1 ‖β̂j − β‖∑100

j=1 ‖β̂
OLS

j − β‖

where β̂ indicates the EL, EL-Hub, EL-Tukey, while β̂
OLS

symbolizes the OLS.
The simulation results are summarized in Tables 1-4. From these tables we observe that,

without contamination all the estimators have similar performance with small MSE values
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for the dimensions 2 and 5. When k = 15 the MSE values of the estimators are getting worse
for all the cases compare to the smaller dimension cases, but even for this case the EL and
robust EL estimators seem superior to the OLS estimators. Smaller behavior is observed
from the table of relative efficiencies.

In Tables 3 and 4 we report the simulation results for the contaminated error distribution.
That is, these are the simulation results for the outlier case. From these result we observe
that when we introduce contamination the robust EL estimators have better performance
compare to the classical EL and the OLS estimators in terms of the MSE values. Among
the two robust estimators the Tukey case seems superior to the Huber case in terms of
the MSE values. Again, when the dimension is large and the sample size is small all the
estimators have large MSE values. However, compare to the classical ones the MSE values
for the robust estimators are relatively small. Overall, from our limited simulation study we
observe that for all the simulation settings considered in this study, the robust EL estimators
have comparable performance in terms of MSE values. Therefore, robust constraints should
be considered in case of potential outliers in the data set.

4 A real data example:International phone calls from Belgium

To illustrate proposed robust EL estimators we will use a data set that is a widely used in
robust regression estimation literature to evaluate the performance of the robust estimation
methods. The data set, which is taken from the book by Rousseeuw and Leory (1987),
contains of the total number (in tens of millions) of international phone calls made over
the years. Table 5 displays the data set. The scatter plot (Figure 1) of the data set shows
an increasing trend over the years. However, it can be noticed that the data set is heavily
contaminated and these points are the outliers in y-direction. Therefore, using classical
methods such as OLS, will not provide adequate estimation. For instance, the fitted line
obtained from the OLS method is highly affected from the contaminated points (Figure 1).
Therefore, robust regression estimation methods have been used to get better fit to this data
set. One can see Rousseeuw and Leory (1987) for further details and the results of the robust
regression estimation methods.

Now we will turn our attention to the EL estimation for the regression parameters. If
we apply classical and robust EL estimation methods considered in this paper we obtain
the regression estimates provided in Table 6. This table also contains the OLS estimates.
From this table we can see that unlike the OLS methods, the EL methods give closers fits
that are obtained from the robust regression estimation methods. We further observe from
Figure 1 that among the EL estimates the robust EL estimates obtained from the Tukey
constraint gives the best fit to data avoiding contaminated points. The line obtained from
these estimates fits the majority of the data points.

5 Conclusion

The EL method can be used instead of classical estimation like the OLS when there is no
distribution assumption on error terms. The EL method maximizes a function of unknown
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probabilities corresponding to each observation under some constraints related to the un-
known probabilities and the moments equations of the unknown parameters of interest. In
the classical EL estimation for regression the constraints related to the parameters of interest
are very similar to the normal equations in the OLS method. The only difference is: in OLS
case we take average, however in EL case the constraints are a weighted form of normal
equations obtained in the OLS method. Here, the weights are the unknown probabilities
used in the EL function. However, it is well known that the OLS method and hence the
corresponding equations have poor performance when there are some outliers in the data.
Although, the observations in the constraints are weighted using the unknown probabili-
ties, these weights are not satisfactory to deal with the outliers. Therefore, some extra care
should be taken to reduce the affect of outliers on the estimation procedure. In this paper,
we have considered the EL method with robustifyed constraints. The robustification has
been done by using some weight functions borrowed from robust M estimation. We have
provided a small simulation study and a real data example to demonstrate the capability of
the robust EL method to handle unusual observations in the data. The simulation and the
real data example results have showed that the robust constraints have plausible affect on
the estimators when heavy tailedness and/or outliers are possible in the data.
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Table 1: The MSE values of estimators
k n ELM ELMTUK ELMHUB OLS

2
30 0,1032 0,1113 0,1089 0,0698
50 0,0965 0,1111 0,1119 0,0377
100 0,0670 0,0688 0,0718 0,0207

5
30 0,2126 0,2107 0,2090 0,2083
50 0,1323 0,1266 0,1283 0,1008
100 0,1041 0,0996 0,1037 0,0605

15
30 0,8651 0,8502 0,8643 1,1643
50 0,4201 0,4342 0,4310 0,4123
100 0,2272 0,2214 0,2269 0,1724

Table 2: The relative efficiencies of estimators with respect to the OLS
k n ELM ELMTUK ELMHUB

2
30 1,4784 1,5941 1,5599
50 2,5622 2,9470 2,9695
100 3,2329 3,3193 3,4628

5
30 1,0203 1,0113 1,0032
50 1,3117 1,2557 1,2726
100 1,7208 1,6469 1,7137

15
30 0,7430 0,7302 0,7423
50 1,0190 1,0532 1,0455
100 1,3175 1,2839 1,3165

Table 3: The MSE values of estimators with 10% outlier
k n ELM ELMHUB ELMTUK OLS

2
30 0.9490 0.7183 0.4338 1.4127
50 1.1896 0.6350 0.2023 1.3495
100 0.9235 0.6128 0.2582 1.1596

5
30 1.6607 0.9600 0.7361 3.4963
50 1.3957 1.0074 0.4344 2.0055
100 1.1178 0.9644 0.4140 1.4192

15
30 18.8479 12.7101 12.9962 48.4243
50 5.7769 2.1413 1.4580 20.1266
100 4.2138 2.0062 1.1010 10.1531
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Table 4: The relative efficiencies of estimators with respect to the OLS with 10% outlier
k n ELM ELMHUB ELMTUK

2
30 0.6718 0.5085 0.3071
50 0.8815 0.4705 0.0343
100 0.7964 0.5285 0.2227

5
30 0.4750 0.2746 0.2105
50 0.6959 0.5023 0.2166
100 0.7877 0.6796 0.2917

15
30 0.3892 0.2625 0.2678
50 0.2870 0.1064 0.0724
100 0.4138 2.1976 0.1084

Table 5: Number of International Calls from Belgium
Y ear NumberofCallsa Y ear NumberofCallsa Y ear NumberofCallsa

(xi) (yi) (xi) (yi) (xi) (yi)
50 0,44 58 1,06 66 14,2
51 0,47 59 1,2 67 15,9
52 0,47 60 1,35 68 18,2
53 0,59 61 1,49 69 21,2
54 0,66 62 1,61 70 4,3
55 0,73 63 2,12 71 2,4
56 0,81 64 11,9 72 2,7
57 0,88 65 12,4 73 2,9

aIn tens of millions.

Table 6: Estimations for International Calls from Belgium
EL ELTUK ELHUB OLS

β̂0 -6,7247 -6,7254 -10,8456 -26,0059

β̂1 0,1809 0,1378 0,2152 0,5041

Figure 1: Number of international phone calls from Belgium in the years 1950-1973 with the OLS,
EL, EL-Tukey, and EL-Huber fit
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