
MapReduce-Guided Scalable Compressed
Dictionary Construction for Evolving Repetitive

Sequence Streams
(Invited Paper)

Pallabi Parveen, Pratik Desai, Bhavani Thuraisingham and Latifur Khan
Department of Computer Science
The University of Texas at Dallas

Richardson, Texas
Email: pxp013300, pxd123230, bhavani.thuraisingham, lkhan@utdallas.edu

Abstract—Users’ repetitive daily or weekly activities may
constitute user profiles. For example, a user’s frequent command
sequences may represent normative pattern of that user. To find
normative patterns over dynamic data streams of unbounded
length is challenging. For this, an unsupervised learning ap-
proach is proposed in our prior work by exploiting a com-
pressed/quantized dictionary to model common behavior se-
quences. This work suffers scalability issues. Hence, in this paper,
we propose and implement a MapReduce-based framework to
construct a quantized dictionary. We show effectiveness of our
distributed parallel solution on a benchmark dataset.

Index Terms—MapReduce, Cloud, Sequence, Unsupervised
Learning

I. INTRODUCTION

Normal user profiles are considered to be repetitive daily or
weekly activities which are frequent sequences of commands,
system calls, etc. These repetitive command sequences are
called normative patterns. These patterns reveal the regular
or normal behavior of a user [1], [2]. Command sequences
continuously arrive as a stream and evolve over time. Due to
the stream nature, when we extract normative patterns, we will
develop one pass algorithms to find normative patterns [3]–
[6]. In other words, the algorithms cannot go over the same
command sequences more than once. In addition, the norma-
tive patterns may change over time; new normative pattern
may evolve. Hence, the algorithm needs to be adaptive or
incremental in nature. For example, a novice programmer can
develop his skills to become an expert programmer over time.

Finding normative patterns is an important problem. This
is because normative patterns of a user can be used as a user
profile. A user profile can be used for targeted advertisement
or insider threat detection. In particular, when a user suddenly
demonstrates unusual activities that indicate a significant ex-
cursion from normal behavior, an alarm is raised for potential
insider threat [2], [7]–[9]. So, in order to identify insider
threats, first we need to find normal user behavior. For that, we
need to collect sequences of commands and find the potential
normative patterns observed within these command sequences
in an unsupervised fashion.

In our prior work, an unsupervised learning approach is used
to find normative patterns [1], [10], [11]. During the learning

process, we store the repetitive sequence patterns from a
users actions or commands in a model called a Quantized
Dictionary. In particular, longer patterns with higher weights
due to frequent appearances in the stream are considered in
the dictionary. To cope with changes, our approach can exploit
incremental learning where the dictionary will be continuously
updated with new incoming sequences.

Construction of a quantized dictionary is time consuming.
We would like to address scalability issues of this algorithm.
One possible solution is to adopt parallel/distributed comput-
ing. Here, we would like to exploit cloud computing based
on commodity hardware [12]–[15]. Cloud computing is a
distributed parallel solution. For our approach, we utilize a
Hadoop and MapReduce based framework to facilitate parallel
computing.

Our primary contributions are as follows. First, we propose
a framework for an unsupervised learning to find pattern
sequences from successive user actions or commands using
unsupervised quantized dictionary construction. Second, we
propose a scalable solution to construct quantize dictionary
using the Hadoop and MapReduc framework. Finally, we
compare our approach with other alternatives and show the
effectiveness of our approach in terms of speed on a bench-
mark dataset.

The rest of the paper is organized as follows. Section II
presents our proposed unsupervised sequence learning. Sec-
tion III presents complexity of our approach. Section IV
addresses scalability issues of our approach using MapReduce
framework. Section V presents experimental setup and results
of our approach. Finally, Section VI concludes and suggests
future work.

II. UNSUPERVISED SEQUENCE LEARNING (USSL)

This unsupervised approach needs to identify normal user
behavior in a single pass [10], [11], [16]. One major challenge
with these repetitive sequences is their variability in length. To
combat this problem, we need to generate a dictionary which
will contain any combination of possible normative patterns
existing in the gathered data stream.

COLLABORATECOM 2013, October 20-23, Austin, United States
Copyright © 2013 ICST
DOI 10.4108/icst.collaboratecom.2013.254135

Figure 1. Quantization of dictionary

Potential variations that could emerge within the data in-
clude the commencement of new events, the omission or mod-
ification of existing events, or the reordering of events in the
sequence. Eg., liftliftliftliftliftcomcomecomecomecomecome, is
a sequence of commands represented by the alphabets given
in a data stream. We will consider all patterns li,if,ft,tl, lif, ift,
ftl, lift, iftl etc., as our possible normative patterns. However,
the huge size of the dictionary presents another significant
challenge.

We have addressed the above two challenges in the follow-
ing ways. First, we extract possible patterns from the current
data chunk using single pass algorithm (e.g., LZW, Lempel-
Ziv- Welch algorithm [17]) to prepare a dictionary. We called
it LZW dictionary. LZW dictionary has a set of patterns and
their corresponding weights according to

wi =
fi∑n
i=1 fi

(1)

where wi is the weight of a particular pattern pi in the current
chunk, fi is the number of times the pattern pi appears in the
current chunk, and n is the total number of distinct patterns
found in that chunk.

Next, we compress the dictionary by keeping only the
longest and frequent unique patterns according to their as-
sociated weight and length, while discarding other subsumed
patterns. This technique is called compression method (CM),
and the new dictionary is a Quantized dictionary (QD). The
Quantized dictionary has a set of patterns and their correspond-
ing weights. Here, we use edit distance to find the longest
pattern. Edit distance is a measure of similarity between
pairs of strings [18]. It is the minimum number of actions
required to transfer one string to another where an action can
be substitution, addition, or deletion of a character into the
string. As in case of the earlier example mentioned, the best
normative pattern in the quantized dictionary would be lift,
come, etc.

This process is a lossy compression, but is sufficient enough
to extract the meaningful normative patterns. The reason
behind this is the patterns that we extract are the superset
of the subsumed patterns. Moreover, as frequency is another
control parameter in our experiment, the patterns which do not
appear often cannot be regular user patterns.

A. Construct the LZW dictionary by selecting the patterns in
the data stream

At the beginning, we consider that our data is not annotated
(i.e., unsupervised). In other words, we dont know the possible
sequence of future operations by the user. So, we use LZW
algorithm [17] to extract the possible sequences that we
can add to our dictionary. These can also be commands
like liftliftliftliftliftcomcomecomecomecomecome, where each
unique letter represents a unique system call or command. We
have used Unicode to index each command. E.g, ls, cp, find
are indexed as l, c, and f. The possible patterns or sequences
are added to our dictionary would be li, if,ft,tl, lif,ift, ftl,
lift, iftl, ftli, tc, co, om, mc,com, come and so on. When the
sequence li is seen in the data stream for the second time, in
order to avoid repetition it will not be included in the LZW
dictionary. Instead, we increase the frequency by 1 and extend
the pattern by concatenating it with the next character in the
data stream, thus turning up a new pattern lif. We will continue
the process until we reach the end of the current chunk. Fig. 1
demonstrates how we generate an LZW dictionary from the
data stream.

linesnumbered 1 Quantized Dictionary
Input: D = {P,W} (LZW dictionary)
Output: QD (quantized dictionary)

22 while D 6= 0 do
44 X ← D1 // first pattern
66 foreach i ∈ D do // for each pattern
88 if editdistance(X,Di) = 1 then P ← P ∪ i

1010 D ← D −X11 if P 6= 0 then
1313 X ← choose(argmaxi(Pilength(i)))14 QD ← QD ∪

X15 D ← D −X
1717 X ← D1 // next pattern

B. Constructing the Quantized Dictionary

Once we have our LZW dictionary, we keep the longest and
most frequent patterns and discard all their subsumed patterns.
Algorithm 1 shows step by step how a quantized dictionary
is generated from LZW dictionary. Inputs of this algorithm
are as follows: LZW dictionary D which contains a set of
patterns P and their associated weight W . Line 4 picks a
pattern (e.g., li). Lines 6 to 8 find all the closest patterns that
are 1 edit distance away. Lines 11 to 15 keep the pattern which
has the highest weight multiplied by its length and discard the
other patterns. We repeat the steps (line 4 to 15) until we find
the longest, frequent pattern (lift). After that, we start with
a totally different pattern (co) and repeat the steps until we
have explored all the patterns in the dictionary. Finally, we end
up with a more compact dictionary which will contain many
meaningful and useful sequences. We call this dictionary our
quantized dictionary. Fig. 1 demonstrates how we generate a
quantized dictionary from the LZW dictionary.

Once we identify different patterns lift, come, etc., any
pattern with X%(≥ %30 in our implementation) deviation

from all these patterns would be considered as anomaly. Here,
we will use edit distance to identify the deviation.

III. COMPLEXITY ANALYSIS

Here, we will report time complexity of quantized dictionary
construction. In order to calculate edit distance between two
patterns of length K (in worst case maximum length would
be K), our worst case time complexity would be O(K2).

Suppose we have n patterns in our LZW dictionary. We have
to construct quantized dictionary from this LZW dictionary. In
order to do this, we need to find patterns in LZW dictionary
which have 1 edit distance from a particular pattern (say p).
We have to calculate edit distance between all the patterns and
the pattern p. Recall that time complexity to find edit distance
between two patterns is O(K2). Since there are total n number
of distinct patterns, total time complexity between p and the
rest of patterns is O(n×K2). Note that p is one of the member
of n patters. Therefore, total time complexity between pair of
patterns is O(n2×K2). This is valid for a single user. If there
is u of distinct users, total time complexity across u user is
O(u× n2 ×K2) (see Table I)

IV. SCALABILITY USING HADOOP AND MAPREDUCE

This section presents proposed scalable LZW and quan-
tized dictionary construction algorithm using Map Reduce
(MR) [12]–[15]. We address scalability issues using the fol-
lowing two approaches. Approaches are illustrated in Fig. 2.
Our proposed approach exploits in one case two map reduce
jobs (2MRJ) and the other case it exploits a single map reduce
job (1MRJ).

Here, we consider a number of users and their command
sequence stream as input. Hence, a set of user’s command
sequence patterns will be the input for mapper program. In
this work, we have not considered one individual particular
user command sequence as input to the mapper program. To
generate a large dataset, we consider all users together.

1) Two Map Reduce Jobs Approach (2MRJ): This is a
simple approach and requires two map reduce (MR) jobs. It
is illustrated Fig. 3 and Fig. 4. The first MR job is dedicated
for LZW dictionary construction in (Fig. 3) and the second
MR job is dedicated for quantized dictionary construction in
(Fig. 4). In the first MR job, Mapper takes userid along with
command sequence as an input to generate intermediate (key,
values) pair having the form ((userid, css), 1). Note that css is
a pattern which is a command sub-sequence. In Reduce phase
intermediate key (userid, css) will be the input. Here, keys are
grouped together and values for the same key (word count)
are added. For example, a particular user 1, has command
sequences ”liftlift”. Map phase emits ((u1, li), 1) ((u1, lif),
1) value as intermediate key value pairs (see middle portion
of Fig. 3). Recall that the same intermediate key will go to
a particular reducer. Hence, a particular user id along with
pattern/css, i.e., key will arrive to the same reducer. Here,
reducer will emit (user id, css) as key and value will be how
many times (aggregated one) pattern appears in the command
sequence for that user (see bottom portion of Fig. 3).

Single Map Reduce
Job for LZW

Single Map Reduce
Job for Quantization

Single Map Reduce Job
(Job # 1)

LZW Partial Dictionary
Construction in Mapper

LZW & Quantization in

2 MRJ 1 MRJ

Job for Quantization LZW & Quantization in
Reducer

(a) 2 MRJ (b) 1 MRJ

Figure 2. Approaches for Scalable LZW and Quantized Dictionary Con-
struction using Map Reduce Job

PARTITION

U3,…
U1, liftlift

U5, cd
U2, blah…

MAPMAP MAP

{(u1, li, 1}
{(u1, lif, 1}
{(u5, cd), 1}

{(u2, …), 1}
{(u2, …), 1}
…

{(un, …), 1}
{(un, …), 1}
…

PARTITION

SHUFFLE & SORT: Aggregate values by keys

REDUCEREDUCE REDUCE

{(u1, li), 2}
{(u1, lif), 2}
{(u2, blah), 10}

.

{(u2, …), 2}
.
.

{…}
.
.

Figure 3. First Map Reduce Job for Scalable LZW Construction in 2MRJ
approach

TABLE I
TIME COMPLEXITY OF QUANTIZATION DICTIONARY CONSTRUCTION

Description Time Complexity
Pair of Patterns O(n2 ×K2)
u number of user O(u× n2 ×K2)

PARTITION

{(Uj, bcd), 15}
{(Uj, dbc), 15}

{(U1, li), 2}
{(U1, lif), 2}
{(U1, lift), 2}

{(U2, blah), 10}

MAPMAP MAP

{U1, (lift 2)} {U2, (………..)} {Uj, (bcd, 15)}

……..

…………

PARTITION

SHUFFLE & SORT: Aggregate values by keys

REDUCEREDUCE

(Ui, { (lift, 2), (blah, 15),… }) (Uj, { (bcd, 15) })

Figure 4. Second Map Reduce Job for Quantized Dictionary Construction
in 2MRJ approach

2) 1MRJ:1 MR Job: Here, we will utilize 1 MR job. It is
illustrated in Fig. 5. We are expecting that by reducing the
number of jobs we can reduce total processing costs.

Running a job in Hadoop takes significant overhead. Hence,
by minimizing the number of jobs, we can construct the dic-
tionary quickly. The overhead for a Hadoop job is associated
with disk I/O and network transfers. When a job is submitted
to Hadoop cluster the following actions will take place:

1) The Executable file is moved from client machine to
Hadoop JobTracker1,

2) The JobTracker determines TaskTrackers2 that will exe-
cute the job,

3) The Executable file is distributed to the TaskTrackers
over the network,

4) Map processes initiates reading data from HDFS,
5) Map outputs are written to local discs,
6) Map outputs are read from discs, shuffled (transferred

over the network to TaskTrackers which would run
Reduce processes), sorted and written to remote discs,

7) Reduce processes initiate reading the input from local
discs,

8) Reduce outputs are written to discs.
Therefore, if we can reduce the number of jobs, we can avoid
expensive disk operations and network transfers. That is the
reason we prefer 1MRJ over 2MRJ.

1http://wiki.apache.org/hadoop/JobTracker
2http://wiki.apache.org/hadoop/TaskTracker

linesnumbered 2 Dictionary Construction and Compression
using single Map-Reduce(1MRJ)

1: Input: gname : groupname, cseq : commandsequences
2: Output: Key : gname, commandpattern(css)

3: map(stringgname, stringcseq)
4: start← 1, end← 2
5: css = (csstart · · · csend)
6: if css 6∈ dictionary then
7: Add css to thedictionary
8: emit(gname, css)
9: start← end

10: end← end+ 1
11: else
12: emit(gname, css)
13: end← end+ 1
14: end if

15: reduce(gname, (css1, css2, · · ·)
16: H ← 0
17: for all cssi ∈ ((css1, css2, · · ·) do
18: if css 6∈ H then
19: H ← H + (cssi, 1)
20: else
21: count← getfrequency(H(cssi))
22: count← count+ 1
23: H ← H + (cssi, count)
24: end if
25: end for
26: QD = QuantizedDictionary(H)
27: for all cssi ∈ QD do
28: emit(gname, pair(cssi, count(cssi)))
29: end for

Mapper will emit user id as key and value will be pattern
(see Algorithm 2). The same user id will arrive at the same
reducer since user is the intermediate key. For that user
id, a reducer will have a list of patterns. In the reducer,
Edit distance operation will be implemented as described in
Section II. Parallelization will be achieved at the user level
(inter user parallelization) instead of within users (intra user
parallelization). In mapper, parallelization will be carried out
by dividing large files into a number of chunks and process a
certain number of files in parallel.

Algorithm 2 illustrates the idea. Input file consists of line by
line input. Each line has entries namely, gname (userid) and
command sequences (cseq). Next, mapper will take gname

(userid) as key, and values will be command sequences for
that user. In mapper we will look for patterns having length
2, 3, etc. Here, we will check whether patterns exist in
the dictionary (line 6). If the pattern does not exist in the
dictionary, we simply add that in the dictionary(line 7), and
emit intermediate key value pairs (line 8) having keys as
gname and values as patterns with length 2, 3 etc. At line 9
and 10, we increment pointer so that we can look for patterns
in new command sequences (cseq). If the pattern is in the
dictionary, we simply emit at line 12 and cseq’s end pointer
is incremented so that we can look for super-set command
sequence.

At the reducer, each user (gname) will be input and list of
values will be patterns. Here, compression of patterns will
be carried for that user. Recall that some patterns will be
pruned using Edit distance. For a user each pattern will be
stored into Hashmap, H. Each new entry in the H will be
pattern as key and value as frequency count. For existing
pattern in the dictionary, we will simply update frequency
count(line 18). At line 20 dictionary will be quantized, and H
will be updated accordingly. Now, from quantized dictionary
all distinct patterns from H will emitted as values along with
key gname.

V. EXPERIMENTAL SETUP AND RESULTS

A. Hadoop Cluster

Our hadoop cluster (cshadoop0-cshadoop9) is compromised
of virtual machines that run in the Computer Science vmware
esx cloud - so there are 10 VM’s. Each VM is configured as
a quad core with 4GB of ram and a 256GB virtual hard drive.
The virtual hard drives are stored on the CS SAN (3PAR).

There are three ESX hosts which are Dell Poweredge
R720’s with 12 cores @2.99GHZ, 128GB of RAM, and fiber
to the 3PAR SAN. The VM’s are spread across the three ESX
hosts in order to balance the load.

cshadoop0 is configured as the ”name node”. A”cshadoop1”
through ”cshadoop9” are configured as the slave ”data nodes”.

We have implemented our approach using Java JDK ver-
sion 1.6.0.39. For MapReduce implementation we have used
Hadoop version 1.0.4.

B. Big Dataset for Insider Threat Detection

The Data sets used are created from the trace files from the
University of Calgary project. 168 files have been collected
from different levels of users of UNIX as described in [9],
[19]. The different levels of users are:

• Novice programmers (56 users)
• Experienced programmers (36 users)
• Computer scientists (52 Users)
• Non-programmers (25 users).
Each file contains the commands used by each of the users

over weeks.
Now, in order to get the big data, first we replicated the

user files randomly so that we have:
• Novice programmers - (1320 Users) i.e. File starting from

”novice-0001” till ”novice-1320”

PARTITION

Un,…
Um,…

U1, liftlift
U5, blahblah

U2, blah…

MAPMAP MAP

(U1, li)
(U1, lif)
(U1, lift),…

(U2, Bl)
(U2, Bla)
(U2, Blah),…

(Un, …)
(Un, …)
(Um, …)

PARTITION

SHUFFLE & SORT: Aggregate values by keys

REDUCE

(U1, {(lift,2), (blah, 15) })
(U2, {(blah, 15)})

REDUCE REDUCE

Quantization

Figure 5. 1MRJ: 1 MR Job Approach for Scalable LZW and Quantized
Dictionary Construction

• Experienced programmers - (576 Users)
• Computer scientists - (832 Users)
• Non-programmers - (1600 Users)
Total Number of Users = 4328; size is 430 MB; and one

command file is for one user.
Next, we gave these files as input to our program (written in

Python) which gave unique unicode for each distinct command
provided by all users. The output file for all users is 15.5 MB.
We dubbed it as original data (OD).

Finally, we replicated this data 12 times for each user. And
we ended up 187 MB of input file which was given as an input
to Map Reduce job of LZW and Compression. We dubbed as
duplicate big data (DBD).

C. Results for Big Data Set Related to Insider Threat Detec-
tion

First, we experiment on OD, and next, we concentrate on
DBD.

On OD Dataset:
We have compared our approaches namely, 2MRJ and 1MRJ
on OD dataset. Here, we have varied number of reducers
and fixed number of mappers (e.g., HDFS block size equals
64MB). In case 2MRJ, we have varied a number of reducers
in 2nd job’s reducer and not in first map reduce job. 1MRJ
outperforms 2MRJ in terms of processing time on a fixed
number of reducers except in the first case (number reducer
equals to 1). With the latter case, parallelization is limited at
the reducer phase. Table II illustrates this. For example, for
number of reducer equals 9, total time taken is 3.47 sec and
2.54 sec for 2MRJ and 1MRJ approaches respectively.

With regard to 2MRJ case, Table IV presents input-output
statistics of both MapReduce jobs. For example, for first map
reduce job mapper emits 65,37,040 intermediate key value

TABLE II
TIME PERFORMANCE OF 2MRJ VS 1MRJ FOR VARYING NUMBER OF

REDUCERS

of Reducer Time for 2MRJ (M:S) Time for 1MRJ (M:S)
1 13.5 16.5
2 9.25 9.00
3 6.3 5.37
4 5.45 5.25
5 5.21 4.47
6 4.5 4.20
7 4.09 3.37
8 3.52 3.04
9 3.47 2.54
10 3.38 2.47
11 3.24 2.48
12 3.15 2.46

TABLE III
TIME PERFORMANCE OF MAPPER FOR LZW DICTIONARY
CONSTRUCTION WITH VARYING PARTITION SIZE IN 2MRJ

Partition Map No of
block size (Sec) mappers
1MB 31.3 15
2MB 35.09 8
3MB 38.09 5
4MB 36.06 4
5MB 41.01 3
6MB 41.03 3
7MB 41.01 3
8MB 55.0 2
64MB 53.5 1

pairs and Reducer emits 95.75MB output. This 95.75MB will
be the input for mapper for the second MapReduce job.

Here, we will show how HDFS block size will have an
impact on LZW dictionary construction in 2MRJ case. First,
we vary HDFS block size that will control the number of
mappers. With 64 MB HDFS block size and 15.5MB input
size, number of mapper equals to 1. For 4MB HDFS block size
number of mapper equals 4. Here, we assume that input File
split size equals HDFS block size. Smaller HDFS block size
(smaller file split size) increases performance (reduce time).
More mappers will be run in various nodes in parallel.

Table III presents total time taken by mapper (part of first
MapReduce job) in 2MRJ case on OD dataset. Here, we
have varied partition size for LZW Dictionary Construction.
For 15.498MB input file size with 8MB partition block size,
MapReduce execution framework used 2 mappers.

on DBD Dataset: Table V shows the details of the value
comparisons of 1MRJ across a various number of reducer and
HDFS block size values. Here, we have used DBD dataset.

In particular, in Fig. 6, we show total time taken for a
varying number of reducers with a fixed HDFS block size.
Here, X axis represents the number of reducer and Y axis
represents the total time taken for 1MRJ with a fixed HDFS
block size. We demonstrate that with an increasing number of
reducers, total time taken will drop gradually. For example,
with regard to reducer 1, 5, and 8, total time taken in 1MRJ
approach is 39.24, 13.04, 10.08 minutes respectively. This
number validates our claim. With more reducers running

Figure 6. Time Taken for Varying Number of HDFS block size in 1MRJ

Figure 7. Time Taken for Varying Number of Reducer in 1MRJ

in parallel, we can run quantization/compression algorithms
for various users in parallel. Recall that in 1MRJ reducer
will get each distinct user as key and values will be LZW
dictionary pattern. Let us assume that we have 10 distinct
users and their corresponding patterns. For compression with
1 reducer, compression for 10 user patterns will be carried
out in a single reducer. On the other hand for 5 reducers,
it is expected that each reducer will get 2 users’ patterns.
Consequently, 5 reducers will run in parallel and each reducer
will execute compression algorithm for 2 users serially instead
of 10. Therefore, with an increasing number of reducers,
performance(decreases time) improves.

Now, we will show how the number of mappers will affect
total time taken in 1MRJ case. The number of mappers is usu-
ally controlled by the number of HDFS blocks (dfs.block.size)
in the input files. Number of HDFS blocks in the input file
is determined by HDFS block size. Therefore, people adjust
their HDFS block size to adjust the number of maps.

Setting the number of map tasks is not as simple as
setting up the number of reduce tasks. Here, first we
determine whether input file is isSplitable. Next, three

TABLE IV
DETAILS OF LZW DICTIONARY CONSTRUCTION AND QUANTIZATION USING MAP REDUCE IN 2MRJ ON OD DATASET

Description Size/Entries in Second Job Size/Entries in First Job
Map Input 95.75MB (size) 15.498MB (size)
Map Output 45,75,120 (entries) 65,37,040 (entries)
Reduce Input 17,53,590 (entries) 45,75,120 (entries)
Reduce Output 37.48 MB 95.75 MB (size)

TABLE V
TIME PERFORMANCE OF 1MRJ FOR VARYING REDUCER AND HDFS BLOCK SIZE ON DBD

No of Reducer 64MB 40MB 20MB 10MB
1 39:24 27:20 23:40 24:58
2 17:36 16:11 13:09 14:53

3 15:54 11:25 9:54 9:12
4 13:12 11:27 8:17 7:41
5 13:06 10:29 7:53 6:53
6 12:05 9:15 6:47 6:05
7 11:18 8:00 6:05 6:04
8 10:29 7:58 5:58 5:04
9 10:08 7:41 5:29 4:38
10 11:15 7:43 5:30 4:42
11 10:40 7:30 4:58 4:41

12 11:04 8:21 4:55 3:46

variables, mapred.min.split.size, mapred.max.split.size, and
dfs.block.size, determine the actual split size. By default, min
split size is 0 and max split size is Long.MAX and block size
64MB. For actual split size, minSplitSize & blockSize set the
lower bound and blockSize & maxSplitSize together sets the
upper bound. Here is the function to calculate:

max(minsplitsize, min(maxsplitsize, blocksize))

For our case we use min split size is 0; max split size is
Long.MAX and blockSize vary from 10MB to 64MB. Hence,
actual split size will be controlled by HDFS block size. For
example, 190MB input file with DFS block size 64MB, the
file will be split into 3 with each split having two 64 MB and
the rest with 62 MB. Finally, we will end up with 3 maps.

In Fig. 7 we show the impact of HDFS block size on
total time taken for a fixed number of reducers. Here, X axis
represents HDFS block size and Y axis represents total time
taken for 1MR approach with a fixed number of reducers. We
demonstrate that with increasing number of HDFS block size,
total time taken will increase gradually for a fixed input file.
For example, with regard to HDFS block size 10, 20, 40, 64
MB total time taken in 1MRJ approach were 7.41, 8.17, 11.27,
13.12 minute respectively for a fixed number of reducers (=4).
On one hand, when HDFS block size of 10 MB, and input file
is 190 MB, 19 maps run where each map processes 10MB
input split. On the other hand, for HDFS block size=64MB, 3
maps will be run where each map will process a 64MB input
split. In the former case (19 maps with 10 MB) each map
will process a smaller file and in the latter case (3 maps with
64MB) we process a larger file which consequently consumes
more time. In the former case, more parallelization can be
achieved. In our architecture, more than 10 mappers can be
run in parallel. Hence, for a fixed input file and fixed number
of reducers, total time increases with increasing HDFS block

size.

VI. CONCLUSIONS AND FUTURE WORK

Compressed/quantized dictionary construction is compu-
tationally expensive. It does not scale well with a num-
ber of users. Hence, we look for distributed solution with
parallel computing with commodity hardware. For this, all
users quantized dictionary is constructed using a MapReduce
framework on Hadoop. A number of approaches are suggested,
experimented on benchmark dataset, and discussed. We have
shown with 1 map reduce job that quantized dictionary can
be constructed and demonstrates effectiveness over other ap-
proaches.

We could extend the work in the following directions.
First, we will build a full fledge system to capture user input
as stream using apache flume and store it on the Hadoop
distributed file system (HDFS) and then apply our approach
as discussed previously. Second, we will apply MapReduce to
calculate edit distance between patterns. Finally, we will up-
date the quantized dictionary using ensemble based techniques
instead of the incremental approach.

ACKNOWLEDGMENT

This material is based upon work supported by National
Science Foundation under Award No. CNS 1229652 and The
Air Force Office of Scientific Research under Award No. FA-
9550-09-1-0468 & FA9550-08-1-0260. We thank Dr. Robert
Herklotz for his support.

REFERENCES

[1] P. Parveen, N. McDaniel, J. Evans, B. Thuraisingham, K. W. Hamlen,
and L. Khan, “Evolving insider threat detection stream mining perspec-
tive,” Journal International Journal on Artificial Intelligence Tools World
Scientific Publishing (to appear in).

[2] K. Wang and S. J. Stolfo, “One-class training for masquerade detection,”
in Proc. ICDM Workshop on Data Mining for Computer Security
(DMSEC), 2003.

[3] M. M. Masud, Q. Chen, L. Khan, C. C. Aggarwal, J. Gao, J. Han,
A. N. Srivastava, and N. C. Oza, “Classification and adaptive novel
class detection of feature-evolving data streams,” IEEE Trans. Knowl.
Data Eng., vol. 25, no. 7, pp. 1484–1497, 2013.

[4] T. Al-Khateeb, M. M. Masud, L. Khan, and B. M. Thuraisingham,
“Cloud guided stream classification using class-based ensemble,” in
IEEE CLOUD, 2012, pp. 694–701.

[5] M. M. Masud, C. Woolam, J. Gao, L. Khan, J. Han, K. W. Hamlen, and
N. C. Oza, “Facing the reality of data stream classification: coping with
scarcity of labeled data,” Knowl. Inf. Syst., vol. 33, no. 1, pp. 213–244,
2011.

[6] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proc. ACM International Conference on Knowledge Discovery and Data
Mining (KDD), 2000, pp. 71–80.

[7] R. C. Brackney and R. H. Anderson, Eds., Understanding the Insider
Threat. RAND Corporation, March 2004.

[8] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, and
Y. Vardi, “Computer intrusion: Detecting masquerades,” Statistical Sci-
ence, vol. 16, no. 1, pp. 1–17, 2001.

[9] R. A. Maxion, “Masquerade detection using enriched command lines,”
in Proc. IEEE International Conference on Dependable Systems &
Networks (DSN), 2003, pp. 5–14.

[10] P. Parveen, N. McDaniel, B. Thuraisingham, and L. Khan, “Unsuper-
vised ensemble based learning for insider threat detection,” in Proc. of
4th IEEE International Conference on Information Privacy, Security,
Risk and Trust (PASSAT), Amsterdam, Netherlands, September 2012.

[11] P. Parveen and B. Thuraisingham, “Unsupervised incremental sequence
learning for insider threat detection,” in Proc. IEEE International
Conference on Intelligence and Security (ISI), Washington DC, June
2012.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Trans. Comput. Syst., vol. 26,
no. 2, 2008.

[13] M. M. Masud, T. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan, J. Han,
and B. M. Thuraisingham, “Cloud-based malware detection for evolving
data streams,” ACM Trans. Management Inf. Syst., vol. 2, no. 3, p. 16,
2011.

[14] A. Haque, B. Parker, and L. Khan, “Labeling instances in evolving data
streams with mapreduce,” in BigData, 2013.

[15] M. F. Husain, J. P. McGlothlin, M. M. Masud, L. R. Khan, and B. M.
Thuraisingham, “Heuristics-based query processing for large rdf graphs
using cloud computing,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 9,
pp. 1312–1327, 2011.

[16] S.-L. Chua, S. Marsland, and H. W. Guesgen, “Unsupervised learning of
patterns in data streams using compression and edit distance,” in IJCAI,
2011, pp. 1231–1236.

[17] T. A. Welch, “A technique for high-performance data compression,”
IEEE Computer, vol. 17, no. 6, pp. 8–19, 1984.

[18] L. Vladimir, “Binary codes capable of correcting deletions, insertions
and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[19] S. Greenberg, “Using unix: Collected traces of 168 users,” in Research
Report 88/333/45, Department of Computer Science, University of Cal-
gary, Calgary, Canada, 1988, http://grouplab.cpsc.ucalgary.ca/papers/.

